K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

cau nay to rat can giai han ra xem nao dung noi ket qua

 

23 tháng 6 2017

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3

=> tổng trên chia hết cho 6

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

4 tháng 2 2016

{1;2;3;6} , ủng hộ giùm mk nha

4 tháng 2 2016

n = 1;2;3 6

mik ko chắc lắm

23 tháng 7 2017

a) n+2 thuộc Ư(20) = {-1,-2,-4,-5,-10,-20,1,2,4,5,10,20}

Ta có bảng :

n+2-1-2-4-5-10-2012451020
n-3-4-6-7-12-22-1023818

Vậy n = {-22,-12,-7,-6,-4,-3,-1,0,2,3,8,18}

b) 2n+3 thuộc Ư(16) = {-1,-2,-4,-8,-16,1,2,4,8,16}

Ta có bảng :

2n+3-1-2-4-8-16124816
n-2\(\frac{-5}{2}\)\(\frac{-7}{2}\)\(\frac{-11}{2}\)\(\frac{-19}{2}\)-1\(\frac{-1}{2}\)\(\frac{1}{2}\)\(\frac{5}{2}\)\(\frac{13}{2}\)

Vậy ...

c) => n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n+1-1-2-3-61236
n-2-3-4-70125

Vậy n = {-7,-4,-3,-2,0,1,2,5}

d) => n-2 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n-2-1-2-3-61236
n10-1-43458

Vậy n= {-4,-1,0,1,3,4,5,8}

e) =>2n+1 thuộc Ư(14)={-1,-2,-7,-14,1,2,7,14}

Ta có bảng :

2n+1-1-2-7-1412714
n-1\(\frac{-3}{2}\)-4\(\frac{-15}{2}\)0\(\frac{1}{2}\)3\(\frac{13}{2}\)

f) =>2n-1 thuộc Ư(6)= {-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

2n-1-1-2-3-61236
n0\(\frac{-1}{2}\)-1\(\frac{-5}{2}\)1\(\frac{3}{2}\)2\(\frac{7}{2}\)

Vậy ...

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

14 tháng 12 2019

\(2n-3⋮n+1\)

\(\Rightarrow2n+2-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow-5⋮n+1\)

\(\Rightarrow n+1\inƯC\left(-5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n=\left\{-2;0;-6;4\right\}\)

Có 2n-3 chia hết cho n+1

=>2(n+1)-5 chia hết cho n+1

=>5 chia hết cho n+1

=>n+1 thuộc Ư(5)={1;5;-1;-5}

Với n+1=1   =>n=0

....

Mấy cái còn lại bn tự làm nha