Tim điều kiện của phương trình:
\(\dfrac{\left|x+2\right|-x}{x}\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Pt thứ nhất :
Ta có mẫu thức chung là : \(2\left(x-3\right)\left(x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x\ne2\\x-3\ne0\\x+1\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne3\\x\ne-1\end{matrix}\right.\)
Vậy \(ĐKXĐ\) là :\(x\ne2;3;-1\)
+ Pt thứ hai :
Ta có mẫu thức chung là : \(\left(x-2\right)\left(x+3\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2\ne0\\x+3\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)
Vậy \(DKXD:\) \(\) \(x\ne2;-3\)
\(\dfrac{\left|x-2\right|}{\sqrt{x-1}}=\dfrac{x-2}{\sqrt{x-1}}\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1>0\end{matrix}\right.\)
\(\Rightarrow x\ge2\)
\(S=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)
Đkxđ: \(\left\{{}\begin{matrix}5-x\ge0\\x-10>0\\\left(x-4\right)\left(x+5\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x>10\\x\ne4\\x\ne-5\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
Vậy BPT vô nghiệm.
Điều kiện xác định là `{(x-3 ne 0),(x(x-3) ne 0):}`
`<=>{(x ne 3),(x ne 0):}`
`=>bb A`
ĐCXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m+1)^2-(m^2+m-1)\geq 0$
$\Leftrightarrow m+2\geq 0\Leftrightarrow m\geq -2$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì ta có:
$x_1+x_2=2(m+1)$
$x_1x_2=m^2+m-1$
Khi đó:
$\frac{1}{x_1}+\frac{1}{x_2}=4$
$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=4$
$\Leftrightarrow \frac{2(m+1)}{m^2+m-1}=4$
$\Rightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0$
$\Leftrightarrow m=1$ hoặc $m=\frac{-3}{2}$ (đều thỏa mãn)
Câu 1: ĐK: $x\neq -1$
Nếu $x\geq 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2-3x}{x+1}\leq 2\Rightarrow \left\{\begin{matrix} x\leq 4\\ x\geq 0\end{matrix}\right.\Rightarrow x\in\left\{0;1;2;3;4\right\}\)
Nếu $x< 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2+3x}{x+1}\leq 2\)
Trường hợp $-1< x< 0$ thì $\Leftrightarrow -2(x+1)\leq 2+3x\leq 2(x+1)$
$\Leftrightarrow x\geq \frac{-4}{5}$ và $x\leq 0$. Kết hợp với ĐK $-1< x< 0$ nên không có giá trị $x$ nguyên thỏa mãn
Trường hợp $x< -1$ thì $\Leftrightarrow -2(x+1)\geq 2+3x\geq 2(x+1)$
$\Leftrightarrow x\leq \frac{-4}{5}$ và $x\geq 0$ (vô lý)
Do đó có 5 giá trị $x$ nguyên thỏa mãn.
Đáp án B
Câu 2:
VTCP của $\Delta_1$: $\overrightarrow{u_1}(m+1, -1)$
VTPT của $\Delta_2$: $\overrightarrow{n_2}(m,-6)$
Để 2 đường thẳng song song với nhau thì: $\overrightarrow{u_1}\perp \overrightarrow{n_2}$
$\Leftrightarrow m(m+1)+(-1)(-6)=0$
$\Leftrightarrow m^2+m+6=0$
$\Leftrightarrow (m+\frac{1}{2})^2=-\frac{23}{4}< 0$ (vô lý- loại)
Vậy không có giá trị m thỏa mãn
Đáp án B.
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
\(\Leftrightarrow\dfrac{\left|x+2\right|}{x}\le3\)
- Với \(x< 0\) BPT \(\Rightarrow\dfrac{\left|x+2\right|}{x}< 0\) hiển nhiên đúng
- Với \(x>0\Rightarrow x+2>0\) BPT tương đương:
\(\dfrac{x+2}{x}\le3\Leftrightarrow x+2\le3x\Rightarrow x\ge1\)
Vậy \(\left[{}\begin{matrix}x< 0\\x\ge1\end{matrix}\right.\)