K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

=) (2x-1)^2008=0

(y-2/5)^2008=0

/x+y+z/=0=)x+y+z=0

-    (2x-1)^2008=0

=)2x-1=0

2x=1

x=1/2

tuong tu ta se tih duoc y

thay vao ta se tih duoc z

duyet nha

12 tháng 2 2016

c.ơn nhaaaa

15 tháng 8 2018

a) \(2009-\left|x-2009\right|=x\)

* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)

\(2009-\left(x-2009\right)=x\)

\(2009-x+2009=x\)

\(4018=2x\)

\(x=2009\)(TMĐK)

* Nếu \(x-2009< 0\Rightarrow x< 2009\)

\(2009-\left[-\left(x-2009\right)\right]=x\)

\(2009-\left(-x+2009\right)=x\)

\(2009+x-2009=x\)

\(0x=0\)

Nên \(x\in R\) trừ \(x< 2009\)

Vậy .......

16 tháng 8 2018

Bạn làm đc câu b, k ạ

11 tháng 12 2017

Theo bài ra ta có 

(2*-1)^2008>=0 với mọi x

(y-2/5)>=0 với mọi y

|x+y-z|>=0 với mọi x; y; z

=>(3 cái trên) >=0 với mọi x y z

Với (đề bài)

<=>2x-1 mũ 2008=0

y-2/5=0

x+y-z=0

=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10

R kết luận

>= là lớn hơn hoặc bg

28 tháng 10 2018

a) \(2009-\left|x-2009\right|=x\)

\(\left|x-2009\right|=2009-x\)

\(\Rightarrow\orbr{\begin{cases}x-2009=x-2009\\x-2009=2009-x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\2x=4018\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\x=2009\end{cases}}\)

Vậy với mọi x thì đẳng thức luôn đúng

b) Thiếu đề thì phải, ( y- )2018 ?

28 tháng 10 2018

câu b là y - 2/5 thanks bạn nha

16 tháng 2 2021

ta có giá trị tuyệt đối luôn lớn hơn 0 và mũ chẵn cũng vậy

mà VT=VP=0 nên

2x-1=0 và y-2/5=0; x+y=z

nên: x=1/2;y=2/5; z=9/10

15 tháng 2 2018

\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

Nhận xét : \(\left\{{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x,y,z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=-\dfrac{9}{10}\end{matrix}\right.\)

14 tháng 5 2016

Vì mọi hạng tử trong đa thức đều lớn hơn hoặc bằng 0 nên ta xét 3 trường hợp:

(+)  \(\left(2x-10\right)^{2008}=0\) \(\Rightarrow\) \(2x-1=0\)

                                         \(\Rightarrow x=\frac{1}{2}\)

(+) \(\left(y-\frac{2}{5}\right)^{2008}\) \(\Rightarrow y-\frac{2}{5}=0\)

                                 \(\Rightarrow y=\frac{2}{5}\)  

(+) \(\left|x+y+z\right|=0\) \(\Rightarrow x+y+z=0\)

                                       \(\Rightarrow\) \(\frac{1}{2}+\frac{2}{5}+z=0\)

                                       \(\Rightarrow\) \(\frac{7}{5}+z=0\)

                                       \(\Rightarrow z=-\frac{7}{5}\)

20 tháng 5 2016

\(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y-z\right|\ge0\end{cases}}\)

=>\(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\end{cases}}\)

KL: (x,y,z)=(\(\frac{1}{2};\frac{2}{5};\frac{9}{10}\))

9 tháng 5 2019

Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y

|x+y-z| \(\ge\)

Suy ra 2x-1=0  nên x=\(\frac{1}{2}\)

y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)

và x+y-z=0    hay   \(\frac{1}{2}+\frac{2}{5}\)-z=0   suy ra z=\(\frac{9}{10}\)