Biết \(\frac{x}{3}=\frac{y+1}{4}\) và x-y=0. Khi đó x2+y2=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x/3=y+1/x=x-y-1/3-x=-1/3-x ( tính chất dãy tỉ số= nhau)
Xem lại đề
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 1 = 4 , x 2 = 3 và y 1 + y 2 = 14
Do đó: 4 y 1 = 3 y 2 ⇒ y 1 3 = y 2 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
Vì \(x\) và \(y\) là hai đại tượng tỉ lệ nghịch nên \(xy=a\left(a\ne0\right)\)
Thay các giá trị tương ứng của \(x\) và \(y\) ta được :
\(x_1.y_1=x_2.y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}\)
\(\Rightarrow\dfrac{y_1}{3}=\dfrac{y_2}{4}\)
- Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{y_1}{3}=\dfrac{y_2}{4}=\dfrac{y_1+y_2}{3+4}=\dfrac{14}{7}=2\)
\(\Rightarrow y_2=2.4=8\)
Vì x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 m à x 1 = 4 ; x 2 = 3 v à y 1 + y 2 = 14
Do đó
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Chọn đáp án D
y+z+1+x+z+2+x+y-3/x+y+z=2(x+y+z)/x+y+z=2
nên x+y+z=1:2=0,5 suy ra x+y+z/2=0,5:2=1/4
Theo t/c dãy tỉ số=nhau:
x/3=y+1/4=x-(y+1)/3-4=x-y-1/-1=0-1/-1=-1/-1=1
=>x/3=1=>x=3
y+1/4=1=>y+1=4=>y=3
Vậy x^2+y^2=3^2+3^2=3^2.2=18