Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
D = x 2 ( x + y ) − y 2 ( x + y ) + x 2 − y 2 + 2 ( x + y ) + 3 = ( x + y ) x 2 − y 2 + x 2 − y 2 + 2 ( x + y ) + 2 + 1 = x 2 − y 2 ( x + y + 1 ) + 2 ( x + y + 1 ) + 1 = x 2 − y 2 ⋅ 0 + 2 ⋅ 0 + 1 = 1 tai x + y + 1 = 0
Vậy D = 1 khi x + y + 1 = 0
Chọn đáp án D
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 1 = 4 , x 2 = 3 và y 1 + y 2 = 14
Do đó: 4 y 1 = 3 y 2 ⇒ y 1 3 = y 2 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
Vì \(x\) và \(y\) là hai đại tượng tỉ lệ nghịch nên \(xy=a\left(a\ne0\right)\)
Thay các giá trị tương ứng của \(x\) và \(y\) ta được :
\(x_1.y_1=x_2.y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}\)
\(\Rightarrow\dfrac{y_1}{3}=\dfrac{y_2}{4}\)
- Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{y_1}{3}=\dfrac{y_2}{4}=\dfrac{y_1+y_2}{3+4}=\dfrac{14}{7}=2\)
\(\Rightarrow y_2=2.4=8\)
Vì x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 m à x 1 = 4 ; x 2 = 3 v à y 1 + y 2 = 14
Do đó
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Chọn đáp án D
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 2 = − 3 ; y 1 = 8 và 4 x 1 + 3 y 2 = 24
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 2 = − 3 ; y 1 = 8 và 4 x 1 + 3 y 2 = 24
x,y là hai đại lượng tỉ lệ thuận
=>\(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{4}=\dfrac{y_1}{16}\)
=>\(\dfrac{x_1}{1}=\dfrac{y_1}{4}\)
mà \(3x_1+2y_1=22\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{1}=\dfrac{y_1}{4}=\dfrac{3x_1+2y_1}{3\cdot1+2\cdot4}=\dfrac{22}{11}=2\)
=>\(x_1=2\cdot1=2\)
=>Chọn D
Ta có x/3=y+1/x=x-y-1/3-x=-1/3-x ( tính chất dãy tỉ số= nhau)
Xem lại đề