Tìm m để 3 điểm \(A\left(2;-1\right)\),\(B\left(1;1\right)\)và \(C\left(3;m+1\right)\)thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để điểm $A(2,-3)$ thuộc đt đã cho thì:
$(m-1)x_A+(m+1)y_A=2m+1$
$\Leftrightarrow (m-1).2+(m+1)(-3)=2m+1$
$\Leftrightarrow 2m-2-3m-3=2m+1$
$\Leftrightarrow -m-5=2m+1$
$\Leftrightarrow -6=3m$
$\Leftrightarrow m=-2$
\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).
\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)
a.
Phương trình có nghiệm kép khi:
\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)
b.
Phương trình có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)
c.
- Với \(m=2\) pt vô nghiệm
- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)
d.
Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)
\(\Rightarrow2\le m< 5\)
a: Thay x=0 và y=0 vào (d), ta được
\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)
\(\Leftrightarrow m^2-2m=0\)
=>m=0 hoặc m=2
b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)
\(\Rightarrow y=2\cdot2x-9+6=4x-3\)
Phương trình hoành độ giao điểm là:
\(x^2-4x+3=0\)
=>x=1 hoặc x=3
Khi x=1 thì y=1
Khi x=3 thì y=9
a: Thay \(y=\dfrac{1}{3}\) vào (d3), ta được:
\(\dfrac{-2}{3}x+\dfrac{5}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow x=2\)
Thay x=2 và \(y=\dfrac{1}{3}\) vào (d), ta được:
\(2\left(m-2\right)+m+7=\dfrac{1}{3}\)
\(\Leftrightarrow3m=\dfrac{1}{3}-3=\dfrac{-8}{3}\)
hay \(m=-\dfrac{8}{9}\)
b: Để hai đường thẳng cắt nhau tại một điểm trên trục tung thì m-1=15
hay m=16
Gọi phương trình đường thẳng đi qua hai điểm A(2;-1) và B(1;1) là \(y=ax+b\)
Thay \(x_A=2;y_A=-1\)vào hàm số \(y=ax+b\), ta được: \(-1=2a+b\)(1)
Thay \(x_B=1;y_B=1\)vào hàm số \(y=ax+b\), ta được \(1=a+b\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}2a+b=-1\\a+b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+1-a=-1\\b=1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=1-a=1-\left(-2\right)=3\end{cases}}\)
Vậy phương trình đường thẳng đi qua A(2;-1) và B(1;1) là \(y=-2x+3\)
Để A,B,C thẳng hàng thì C phải thuộc đường thẳng AB; vì đường thẳng AB chính là đường thẳng \(y=-2x+3\)nên C phải thuộc đường thẳng \(y=-2x+3\)
Thay \(x_C=3;y_C=m+1\)vào hàm số \(y=-2x+3\), ta có:\(m+1=-2.3+3\Leftrightarrow m=-4\)
Vậy với \(m=-4\)thì 3 điểm A,B,C thẳng hàng.