K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

A B C a H

Vì ABC là tam giác đều nên \(AB=BC=CA=a\)

Vì  ABC là tam giác đều nên đường cao cũng là đường trung tuyến hay \(HB=HC=\frac{BC}{2}=\frac{a}{2}\)

Tam giác AHB vuông tại H , áp dụng định lý pitago

     \(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2=a^2-\left(\frac{a}{2}\right)^2=a^2-\frac{a^2}{4}=\frac{4a^2-a^2}{4}=\frac{3a^2}{4}\)

\(\Rightarrow AH=\sqrt{\frac{3a^2}{4}}\)

 

 

 

 

5 tháng 2 2016

a, tam giác ABH và tam giác CAH có: 

AB = AC

AH: cạnh chung

góc H1 = góc H2 (=90*) 

=> tam giác ABH = tam giác CAH

=> HB = HC (cạnh tương ứng )

=> góc BAH = góc CAH ( góc tương ứng)

ko chắc đúng đâu 

5 tháng 2 2016

b, bn tự tính nhé !!

c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC? 

17 tháng 8 2018

A B C H E F 5 cm 12 cm

a) Áp dụng định lí Py-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=5^2+12^2\)

\(\Leftrightarrow BC^2=169\)

\(\Leftrightarrow BC=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có :  \(AB.AC=BC.AH\)

\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)

b) Áp dụng hệ thức lượng ta có  \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

Do BE là tia phân giác \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)

\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)

Mặt khác BF là tia phân giác  \(\widehat{ABC}\)

\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)

\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)

Xét  \(\Delta AEF\)có  \(AE=AF\left(=\frac{10}{3}cm\right)\)

\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )

Vậy ...

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
17 tháng 8 2018

hình,

A B C H E F 1 2 1 2 1

~~~

a/ A/dụng pitago vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)

Xét ΔHBA và ΔABC có:

\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)

=>ΔHBA ~ ΔABC (g.g)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)

b/ Xét ΔABF và ΔHBE có:

\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)

=> ΔABF ~ ΔHBE (g.g)

=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)

mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)

=> \(\widehat{F_1}=\widehat{E_1}\)

=> ΔAEF cân tại A (đpcm)

7 tháng 9 2017

a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67

MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3

 

10 tháng 7 2019

A B C H D E N M K

Gọi K là giao điểm của HA và DE

Kẻ DM, EN vuông góc với AH tại M và N

Xét  tam giác vuông  AEN và tam giác vuông ACH có: 

AE=AC ( giả thiết)

\(\widehat{NAE}=\widehat{HCA}\)( cùng phụ góc HAC)

=> Tam giác AEN= Tam giác ACH

=> EN=AH (1)

Tương tự chứng minh được: Tam giác DAM= tam giác ABH

=> AH=DM (2)

Từ (1) và (2)

=> DM =NE (3)

Xét tam giác vuông DMK và tam giác vuông ENK có:

\(\widehat{DKM}=\widehat{EKN}\)

DM=NE ( theo (3))

=> Tam giác DMK=ENK

=> KD=KE

=> K là trung điểm DE

=> AH đi qua trung điểm DE

11 tháng 7 2019

cô có thẻ giải thích 1 chút về cùng phụ góc HAC được ko ạ ?