cho tam giác đều ABC có AB =a.Kẻ AH vuông góc với BC. Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABH và tam giác CAH có:
AB = AC
AH: cạnh chung
góc H1 = góc H2 (=90*)
=> tam giác ABH = tam giác CAH
=> HB = HC (cạnh tương ứng )
=> góc BAH = góc CAH ( góc tương ứng)
ko chắc đúng đâu
b, bn tự tính nhé !!
c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC?
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=5^2+12^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có : \(AB.AC=BC.AH\)
\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)
b) Áp dụng hệ thức lượng ta có \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
Do BE là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)
\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)
Mặt khác BF là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)
\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)
Xét \(\Delta AEF\)có \(AE=AF\left(=\frac{10}{3}cm\right)\)
\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )
Vậy ...
hình,
~~~
a/ A/dụng pitago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)
Xét ΔHBA và ΔABC có:
\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)
=>ΔHBA ~ ΔABC (g.g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)
b/ Xét ΔABF và ΔHBE có:
\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)
=> ΔABF ~ ΔHBE (g.g)
=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)
mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)
=> \(\widehat{F_1}=\widehat{E_1}\)
=> ΔAEF cân tại A (đpcm)
a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67
MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3
Gọi K là giao điểm của HA và DE
Kẻ DM, EN vuông góc với AH tại M và N
Xét tam giác vuông AEN và tam giác vuông ACH có:
AE=AC ( giả thiết)
\(\widehat{NAE}=\widehat{HCA}\)( cùng phụ góc HAC)
=> Tam giác AEN= Tam giác ACH
=> EN=AH (1)
Tương tự chứng minh được: Tam giác DAM= tam giác ABH
=> AH=DM (2)
Từ (1) và (2)
=> DM =NE (3)
Xét tam giác vuông DMK và tam giác vuông ENK có:
\(\widehat{DKM}=\widehat{EKN}\)
DM=NE ( theo (3))
=> Tam giác DMK=ENK
=> KD=KE
=> K là trung điểm DE
=> AH đi qua trung điểm DE
cô có thẻ giải thích 1 chút về cùng phụ góc HAC được ko ạ ?
Vì ABC là tam giác đều nên \(AB=BC=CA=a\)
Vì ABC là tam giác đều nên đường cao cũng là đường trung tuyến hay \(HB=HC=\frac{BC}{2}=\frac{a}{2}\)
Tam giác AHB vuông tại H , áp dụng định lý pitago
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2=a^2-\left(\frac{a}{2}\right)^2=a^2-\frac{a^2}{4}=\frac{4a^2-a^2}{4}=\frac{3a^2}{4}\)
\(\Rightarrow AH=\sqrt{\frac{3a^2}{4}}\)