Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà AE=AF
nên AEMF là hình thoi
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
Link bạn tự chép nhâ:https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC,+t%E1%BB%AB+%C4%91i%E1%BB%83m+D+tr%C3%AAn+BCker+c%C3%A1c+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng//+v%E1%BB%9Bi+c%C3%A1c+c%E1%BA%A1nh+AB,AC+ch%C3%BAng+c%E1%BA%AFt+AB,AC+theo+th%E1%BB%A9+t%E1%BB%B1+tai+E,F++CMR:+++(AF:AB)+(AE:AC)=1&id=543662