Chứng minh bất đẳng thức: \(a^2+b^2+1\ge ab+a+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+1\ge ab+a+b\Leftrightarrow2\left(a^2+b^2+1\right)-2\left(ab+a+b\right)\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi và chỉ khi a = b = 1
a, Ta có: \(\left(a+b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(a+1\right)^2\ge0\Rightarrow a^2+1\ge2a\)
\(\left(b+1\right)^2\ge0\Rightarrow b^2+1\ge2b\)
Cộng vế với vế ta có: \(a^2+b^2+a^2+1+b^2+1\ge2ab+2a+2b\)
\(\Rightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)(ĐPCM)
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng
Vậy ta có đpcm
Không chắc là đúng đâu nhé :D
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)
\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)
\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow2a-1\ge0\)
\(\Leftrightarrow a\ge\frac{1}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(b-c\right)^2\ge0\Rightarrow b^2+c^2\ge2bc\)
\(\left(a-c\right)^2\ge0\Rightarrow a^2+c^2\ge2ac\)
\(\Rightarrow2\left(a^{2+}b^2+c^2\right)\ge2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\left(đpcm\right)\)
Chúc bạn học tốt !!!
Lời giải:
Điều kiện: \(a>b\geq 0\)
Áp dụng BĐT Cô-si cho các số dương ta có:
\(a+\frac{4}{(a-b)(b+1)^2}=a-b+b+\frac{4}{(a-b)(b+1)^2}\)
\(=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
\(\geq 4\sqrt[4]{(a-b).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{(a-b)(b+1)^2}}-1\)
\(=4-1=3\)
Ta có đpcm
Dấu "=" xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\Leftrightarrow a=2; b=1\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
Ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế 3 bất đẳng thức trên ta có:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\) xảy ra khi \(a=b=c\)
CHÚC BẠN HỌC TỐT........
ta có : \(\left(a-b-c\right)^2\ge0\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca\ge0\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge2ab+2bc+2ca\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)
vậy \(a^2+b^2+c^2\ge ab+bc+ca\) với mọi \(a;b;c\) (đpcm)
\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}\cdot a\cdot b+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)
Đề phải như thế này nhé:
Chứng minh: \(a^2+b^2+1\ge ab+a+b\)
Áp dụng BĐT Cauchy ta có:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(a^2+b^2\ge2ab\)
Cộng vế 3 BĐT trên lại ta được: \(2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Dấu "=" xảy ra khi: a = b = 1