cho tam giác ABC có AH là đường cao. Chứng minh \(AB^n+AC^n< AH^n+BC^n\) (với n là số nguyên dương)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó:I là trung điểm của AH
a/
Xét tg vuông HAB và tg vuông ABC có
\(\widehat{HAB}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAB đồng dạng với tg ABC (g.g.g)
b/ Xét tg vuông ABC có
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\)
c/ Đề bài sai sửa thành HA.HB=HC.HD
Xét tg vuông HBD và tg vuông HAC có
BD//AC (gt) \(\Rightarrow\widehat{HBD}=\widehat{HCA}\) (góc so le trong)
=> tg HBD đồng dạng với tg HAC
\(\Rightarrow\dfrac{HD}{HA}=\dfrac{HB}{HC}\Rightarrow HA.HB=HC.HD\)
d/
Xét tg vuông HAC, nối HN có
AN=CN (gt) => \(HN=AN=CN=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg NHC cân tại N \(\Rightarrow\widehat{NHC}=\widehat{NCH}\) (góc ở đáy tg cân) (1)
Xét tg vuông HBD, nối HM có
BM=DM (gt) => \(HM=BM=DM=\dfrac{BD}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg MBH cân tại M => \(\widehat{MBH}=\widehat{MHB}\) (góc ở đáy tg cân) (2)
Mà BD//AC (gt) \(\Rightarrow\widehat{NCH}=\widehat{MBH}\) (góc sole trong ) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{NHC}=\widehat{MHB}\)
Mà \(\widehat{NHC}+\widehat{BHN}=\widehat{BDC}=180^o\)
\(\Rightarrow\widehat{MHB}+\widehat{BHN}=\widehat{MHN}=180^o\) => M; H; N thẳng hàng