Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có :
BC2 + AC2 = 82 + 62 = 100 = 102 = AB2
=> tam giác ABC vuông tại C
=> góc C là 90o , góc A và góc B là 45o
Giỏi thật: Nếu A = B = 45 độ thì CA = CB rồi (mà CA=6cm khác AB=8cm)
Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)
nhầm chỗ HTL nhé
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Bài giải:
Áp dụng định lí pytago vào tam giác ABC ta có:
BC²=AB²+AC²=6²+8² =36+64=100
=> BC=10cm áp dụng hệ thức về cạnh và góc vào tam giác vuông ABC ta có sinB=AC/BC=8/10=4/5 =>góc B=53'
~Học tốt~
a: DE⊥AC
AB⊥AC
Do đó: DE//AB
b: AC=8cm
=>CE=8-2=6(cm)
Xét ΔCAB có ED//AB
nên CD/CB=CE/CA
=>CD/10=6/8=3/4
=>CD=7,5(cm)
=>BD=2,5(cm)
a ) Ta có : AB² + AC² = 8² + 6² = 100
BC² = 10² = 100
=> AB² + AC² = BC²
=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )
b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :
AH² + BH² = AB²
Hay AH² + 6,4² = 8²
<=> AH² = 64 - 40,96 = 23,04
=> AH = 4,8 cm
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB
Có
\(AB^2=10^2\)
\(BC^2+AC^2=36+64=10^2\)
=> \(AB^2=AC^2+BC^2\)
=> t/g ABC vuông tại C
=> \(\widehat{ACB}=90^o\)
90 độ