Chứng tỏ S=16^5+2^15 chia hết cho 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
S = 165 + 215
=> S = 220 + 215
=> S = 215.(25 + 1)
=> S = 215.33 \(⋮\)33 (đpcm)
Ta có \(S=16^5+2^{15}\)
\(S=\left(2^4\right)^5+2^{15}\)
\(S=2^{20}+2^{15}\)
\(S=2^{15}.\left(2^5+1\right)\)
\(S=2^{15}\left(32+1\right)\)
\(S=2^{15}.33⋮33\)
Vậy \(S=16^5+2^{15}\)chia hết cho 33
S = 165 + 215
S = 1048576 + 32768
S = 1081344
Mà : 1081344 : 33 = 32768 ( không dư )
Nên S = 165 + 215 sẽ \(⋮\) 5 .,
Vì em mới học lớp 5 nên chỉ biết thế này thôi , có gì anh/chị thông cảm cho em !!!
Có :
165 + 215 = ( 24 )5 + 215 = 220 + 215 = 215 ( 25 + 1 ) = 215 . ( 32 + 1 ) = 215 . 33
Vì 33 chia hết cho 33 => 215 . 33 chia hết cho 33
=> S = 165 + 215 chia hết cho 33 ( đpcm )
16^5 + 2^15 = 1081344 / 33 = 32768 du 0
minh voi qua nen lam cach nay cho nhanh
a/
Tổng các chữ số của ababab là :
a+b+a+b+a+b = 3a+3b = 3.[a+b] chia hết cho 3
=> ababab chia hết cho3
b/
S=16^5+2^15=[2^4]^5+2^15=2^20+2^15=2^15. [2^5+1] = 2^15.33 chia hết cho 33
=> đpcm
a)
ababab=ab0000+ab00+ab
= abx10000+abx100+abx1
=abx(10000+100+1)
=abx10101
ta có 10101 chia hết cho 3
nên abx10101 chia hết cho3
suy ra ababab là bội của 3
a) Ta có: T= (2+22+23+24)+(25+26+27+28)+.....+(257+258+259+260)
= 30.1 + 25. (2+22+23+24) +.....+ 257. (2+22+23+24)
= 30.1 + 25 . 30 +......+ 257 . 30
=30 . ( 25+...+257)
Vì 30 chia hết cho 30
=> T chia hết cho 30
mà 30 chia hết cho 5
=> T chia hết cho 5
các bài còn lại câu a tương tự bạn tự làm nhé
Phương pháp: nhóm các số hạng để đc 1 số chia hết cho số đó
b) Ta có: S = 165+215
= 220 + 215
=215 . ( 25 + 1)
=215 . 33
Vì 33 chia hết cho 33
=> S chia hết cho 33
CHÚC BẠN HOK TỐT!!!!!!
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33