K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=căn 20^2-12^2=16cm

b: Xét ΔMKB và ΔMHC có

MK=MH

góc KMB=góc HMC

MB=MC

=>ΔMKB=ΔMHC

c: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

=>ΔAMB cân tại M

mà MD là trung tuyến

nên D là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

MH//AB

=>H là trung điểm của AC

Xét ΔCAB có

BH,AM là trung tuyến

BH cắt AM tại G

=>G là trọng tâm

=>C,G,D thẳng hàng

19 tháng 5 2021

△ABC vuông tại A theo ĐL Py Ta Go ta có BC\(^2\)=AB\(^2\)+AC\(^2\)=6\(^2\)+8\(^2\)=100.Vậy BC=100cm

 

19 tháng 5 2021

b,ta có MT//AB=>BAC=MTC=90△ABC vuông tai A =>ABC+ACB= 90 △MTC vuông tại T=>TMC +ACB = 90 =>ABC = TMC(2) △AHB và △CTM có ABC = TMC (theo(2)) AB = MC (gt) AHB = CTM = 90 =>△ABC =△TMC (CH-GN) =>CT=AH

a: BC=10cm

b: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó; ΔABD=ΔEBD

Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE\(\perp\)BC

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
11 tháng 4 2020

không biết

11 tháng 5 2022

B C M E K
a) áp dụng đ/l py-ta-go ΔABC:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=\sqrt{100}\left(cm\right)\)
\(BC=10cm\)

11 tháng 5 2022

b) xét ΔBEA và ΔBEM, có:
     BE= cạnh huyền chung
     \(\widehat{ABE}=\widehat{MBE}\) (tia p/g \(\widehat{B}\)
  =>ΔBEA=ΔBEM (cạnh huyền-góc nhọn)

10 tháng 2 2022

cứt

 

30 tháng 12 2021

Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)

Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)

30 tháng 12 2021

b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K

Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:

\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)

Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow AK\perp BI\)tại H