K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

Ta có \(P=xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=3\).

Đẳng thức xảy ra khi x = y = z = 1.

22 tháng 12 2017

Với mọi x,y,z ta luôn có

(x-y)2+(y-z)2+(z-x)2\(\ge\)0

<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0

<=> x2+y2+z2-xy-yz-zx\(\ge\)0

<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0

<=> (x+y+z)2\(\ge\)3(xy+yz+zx)

<=> 9\(\ge\)3(xy+yz+zx)

<=> 3\(\ge\)xy+yz+zx = B

Dấu "=" xảy ra khi x=y=z=1

Vậy max B=3 <=> x=y=z=1

26 tháng 2 2019

đây mới là chuẩn nè

10 tháng 5 2016

khó quá!!!!!!!!!!!

23 tháng 4 2017

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

25 tháng 5 2018

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

22 tháng 11 2016

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

20 tháng 12 2016

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

1 tháng 5 2017

Cauchy-Schwarz : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+zx\right|\ge xy+yz+zx\)(1)

Mặt khác :

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)

Kết hợp (1) 

=> \(9-2\left(xy+yz+xz\right)\ge xy+yz+zx\)

\(\Leftrightarrow3\left(xy+yz+zx\right)\le9\)

\(\Leftrightarrow xy+yz+zx\le3\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\)<=> x=y=z=1

Vậy MaxM=3 khi x=y=z=1

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24