Cho A=√x+1/√x+3 . Tìm x thuộc Z để A là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Để A có giá trị là một số nguyên thì:
\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)
Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 16 | 4 | 25 | 1 | 49 | (loại) |
Vậy ....
Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A có giá trị là một số nguyên khi:
\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\) ( loại )
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)
Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)
a: Để B nguyên thì \(-7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
b: Để A là số nguyên thì \(3x+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-2;-4;14;-8\right\}\)
Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)
ĐK: x khác -3
Ta có: \(A=\frac{x+5}{x+3}=1+\frac{2}{x+3}\)
a) Để A là phân số => 2/(x+3) không nguyên => x + 3 không phải là ước số của 2.
2 có các ước: +-1; +-2
* \(x+3\ne1\Rightarrow x\ne-2\)
*\(x+3\ne-1\Rightarrow x\ne-4\)
*\(x+3\ne2\Rightarrow x\ne-1\)
* \(x+3\ne-2\Rightarrow x\ne-5\)
b) Để A là số nguyên => 2/(x+3) nguyên=> (x+3) là ước của 2. Tương tự trên => x =-5; -4; -2; -1
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\Leftrightarrow A^2=\frac{x+1}{x-3}.\)
\(\Leftrightarrow A^2=\frac{x-3+4}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)
Để \(A\in Z\Leftrightarrow1+\frac{4}{x-3}\in Z\).
Mà \(1\in Z\)
\(\Leftrightarrow\frac{4}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ_4=\left\{\pm2;\pm4;\pm1\right\}\)
Ta có bảng sau :
x-3 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 7 | -1 | 5 | 1 | 4 | 2 |
\(A=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Leftrightarrow A\left(\sqrt{x}+3\right)=\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\left(A-1\right)=1-3A\)
Nếu \(A-1=0\Leftrightarrow A=1\)không thỏa.
Nếu \(A\ne1\): \(\sqrt{x}=\frac{1-3A}{A-1}\ge0\Leftrightarrow\frac{1}{3}\le A< 1\)
Suy ra không tồn tại giá trị \(x\)thỏa mãn.