K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

ĐK : n ∈ Z

n3 + 3n2 - 4n

= n3 + 3n2 + 2n - 6n

= n( n2 + 3n + 2 ) - 6n

= n( n2 + n + 2n + 2 ) - 6n

= n[ n( n + 1 ) + 2( n + 1 ) ] - 6n

= n( n + 1 )( n + 2 ) - 6n

Dễ dàng chứng minh n( n + 1 )( n + 2 ) ⋮ 6 và 6n ⋮ 6

=> n( n + 1 )( n + 2 ) - 6n ⋮ 6

hay n3 + 3n2 - 4n ⋮ 6 ( đpcm )

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

18 tháng 8 2023

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

18 tháng 8 2023

nhớ nha

 

14 tháng 3 2018

Gọi \(d=ƯCLN\left(3n-2;4n-3\right)\) \(\left(d\in N\right)\)

Khi đó \(3n-2⋮d\Rightarrow4.\left(3n-2\right)⋮d\)( vì 3n-2 chia hết cho d  nên 4.(3n-2) cũng luôn chia hết cho d ) 

\(4n-3⋮d\Rightarrow3.\left(4n-3\right)⋮d\)( tương tự trên )

Do đó \(3.\left(4n-3\right)-4.\left(3n-2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Do đó \(ƯCLN\left(3n-2;4n-3\right)=1\)

Khi đó phân số \(\frac{3n-2}{4n-3}\)tối giản

14 tháng 3 2018

Thế bạn làm thế nào mà ra 4 và 5

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)