Hỏi phải chia cả hai vế của phương trình -x=5 cho số nào để được phương trình x=-5?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 4x = 5 (1) có nghiệm x = 5/4
Phương trình 3x = 4 (2) có nghiệm x = 4/3
Nhân các vế tương ứng của hai phương trình đã cho ta được phương trình
4x.3x = 5.4 hay 12x2 = 20 (3) có hai nghiệm x = và x = -
a) Phương trình (3) không tương đương với phương trình nào trong hai phương trình (1) và (2) vì không có cùng tập nghiệm.
b) Phương trình (3) không phải phương trình hệ quả của phương trình nào trong các phương trình (1) và (2) vì nghiệm của (1) và (2) đều không phải nghiệm của (3).
Sử dụng tính chất “cộng hay trừ hai vế một bất đẳng thức với cùng một số và giữ nguyên chiều bất đẳng thức ta được một bất đẳng thức tương đương”.
Đáp án: A
a) Phương trình có dạng \(2^{x+1}=2^{-2}\).
b) So sánh số mũ của \(2\) ở hai vế của phương trình ta được:
\(x+1=-2\Rightarrow x=-3\).
Bạn Mai giải đúng và bạn An giải sai vì khi bạn An chia cả hai vế cho \(x\) thì chưa đảm bảo tính số chia khác 0 do chúng ta chưa biết \(x\).
Khi x = 2 vế trái của phương trình đã cho không có nghĩa do mẫu bằng 0
Vế phải có nghĩ khi x - 1 ≥ 0 ⇔ x ≥ 1
Nếu bình phương hai vế (khử căn thức chứa ẩn) của bất phương trình 1 - x ≤ x ta nhận được bất phương trình 1 - x ≤ x 2
Bất phương trình nhận được không tương đương với bất phương trình đã cho vì có x = 2 không phải là nghiệm bất phương trình đã cho nhưng lại là nghiệm của bất phương trình mới nhận được sau phép bình phương.
Ghi nhớ: Không được bình phương hai vế một bất phương trình vì có thể làm xuất hiện nghiệm ngoại lai.
a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)ta được:
\({x^2} - 3x + 2 = - {x^2} - 2x + 2\)(1)
Giải phương trình trên ta có:
\((1) \Leftrightarrow 2{x^2} - x = 0\)
\( \Leftrightarrow x(2x - 1) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)
b) Thử lại ta có:
Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng)
Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:
\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
Nếu nhân hai vế của 1/x ≤ 1 với x, ta được bất phương trình mới x ≥ 1; bất phương trình này không tương đương với bất phương trình đã cho vì đã làm mất đi tất cả các nghiệm âm của nó.
Ghi nhớ: Không được nhân hay chia hai vế của một bất phương trình với một biểu thức chứa ẩn mà không biết dấu của biểu thức đó.
Phương trình 3x = 2 (1) có nghiệm x = 2/3
Phương trình 2x = 3 (2) có nghiệm x = 3/2
Cộng các vế tương ứng của hai phương trình (1) và (2) ta được phương trình
3x + 2x = 2 + 3 hay 5x = 5 (3) có nghiệm x = 1.
a) Phương trình (3) không tương đương với phương trình nào trong các phương trình (1) và (2) vì không có cùng tập nghiệm.
b) Phương trình (3) không phải phương trình hệ quả của phương trình nào trong các phương trình (1) và (2) vì nghiệm của (1) và (2) đều không phải nghiệm của (3).
Chia cho -1