Tìm các giá trị nguyên dương của n<40 sao cho : Phân số 7n+12/3n+7 đơn giản được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Var i,k,n,bk,tong: integer;
a: array[1..1000] of integer;
Begin
write('Nhap K: '); readln(k);
write('Nhap N: '); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
{câu a}
For i:=1 to n do
if a[i]=k then bk:=bk+1;
writeln('Co so phan tu bang k la:',k);
{câu b}
For i:=1 to n do
if a[i]=k then
begin
write(i,' ');
tong:=tong+a[i];
end;
write('. Tong la:',tong);
readln
end.
uses crt;
var k,n,tong,d,i:longint;a:array[1..1000]of longint;
begin
clrscr;
write('n=');readln(n);
write('k=');readln(k);
for i:=1 to n do
begin
write('a[',i,']=');readln(a[i]);
end;
d:=0;
for i:=1 to n do if(a[i]=k)then inc(d);
writeln('so phan tu bang voi:',k,' la:',d);
write('cac so co vi tri bang voi:',k,' la:');
tong:=0;
for i:=1 to n do if(a[i]=k)then
begin
write(i,' ');
tong:=tong+a[i];
end;
write('tong cua cac so bang voi:',k,' la:',tong);
readln;
end.
Để \(B\in Z\)
\(\Rightarrow\dfrac{n+4}{n-3}\in Z\\ \Rightarrow\dfrac{n-3+7}{n-3}\in Z\Rightarrow1+\dfrac{7}{n-3}\in Z\)
Mà \(1\in Z\Rightarrow\dfrac{7}{n-3}\in Z\Rightarrow n-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng:
n-3 | -7 | -1 | 1 | 7 |
n | -4 | 2 | 4 | 10 |
Mà \(n\in N\Rightarrow n\in\left\{2;4;10\right\}\)
\(B=\dfrac{n+4}{n-3}=\dfrac{n-3+7}{n-3}=1+\dfrac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n-3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4(loại) |
Lời giải:
Vì $m,n$ nguyên tố cùng nhau, $m+n=90$ chẵn nên $m,n$ là hai số lẻ phân biệt.
Không mất tổng quát giả sử $m>n$.
$90=m+n>2n\Rightarrow n< 45$. Vì $n$ lẻ nên $n\leq 43$.
Có:
$mn=(90-n)n=90n-n^2=n(43-n)-47(43-n)+43.47$
$=(n-47)(43-n)+2021$
Vì $n\leq 43$ nên $n-47< 0; 43-n\geq 0\Rightarrow (n-47)(43-n)\leq 0$
$\Rightarrow mn\leq 2021$. Giá trị này đạt tại $n=43, m=47$ thỏa mãn điều kiện đề.
Vậy GTLN của $mn$ là $2021$.
Ta có: \(x^2+1\ge2x\Rightarrow x^2-x+1\ge x\Rightarrow A=\frac{2x}{x^2-x+1}\le\frac{2x}{x}=2\).
- \(A=2\Rightarrow x=1\).
- \(A=1\Rightarrow x^2-3x+1=0\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\)(không thỏa).
- \(A=0\Rightarrow x=0\).
`A=1=>x^2 -3x+1=0<=>x=[3+-\sqrt{5}]/2`
E hỏi `-3x` ở đâu ra vậy ạ
uses crt;
var a:array[1..250]of integer;
n,i,t,max,min:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
t:=0;
for i:=1 to n do
if a[i] mod 3=0 then t:=t+a[i];
writeln('Tong cac so la boi cua 3 la: ',t);
max:=a[1];
min:=a[1];
for i:=1 to n do
begin
if max<a[i] then max:=a[i];
if min>a[i] then min:=a[i];
end;
writeln('Gia tri lon nhat la: ',max);
writeln('Gia tri nho nhat la: ',min);
readln;
end.