Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A là phân số ⇔ x + 5 ≠ 0 ⇔ x ≠ -5
b) A là một số nguyên ⇔ (x – 2) ⋮ ( x + 5)
Ta có: x – 2 = [(x + 5) – 7] ⋮ ( x + 5) ⇔ 7 ⋮ ( x + 5) ⇔ x + 5 là ước của 7
x + 5 ∈ { 1 ; -1 ; 7 ; -7 }
x ∈ { -4 ; -6 ; 2 ; -12 }
a) để A là phân số thì
- 2x+5 là số nguyên => 2x+5 nguyên với mọi x nguyên
- 2x-1 nguyên va 2x-1#0 => 2x-1 nguyên và 2x-1#0 với mọi x nguyên
vậy A là phân số với mọi x nguyên.
b) nhận thấy 2x -1 là số lẻ nên
(1) <=> A = 1 + 6/(2x-1) để A nguyên thì 1 + 6/(2x-1) nguyên <=> 6/(2x-1) nguyên <=>
<=> 6 chia hết cho (2x-1) hay (2x-1) là ước lẻ của 6 vậy:
(2x-1) = { 1 ; 3 ; -1 ; -3 } (*)<=> 2x = { 2 ; 4 ; 0 ; -2 } <=>
<=> x = { 1 ; 2 ; 0 ; -1}
vì x nguyên nên x chỉ lấy các giá trị : x = {1 ; 2 ; -1}
c) A = 1 + 6/(2x-1) để Amax thì 1 + 6/(2x-1) max <=> 6/(2x-1) max
vì 6 > 0 nên để 6/(2x-1)max thì (2x-1) là ƯSC dương lẻ nhỏ nhất của 6 với x nguyên dương
<=> 2x-1 = 1 (theo (*)) <=> x = 1 khi đó Amax = 1 + 6/1 = 7
để Amin thì 1 + 6/(2x-1)min <=> 6/(2x-1)min
vì 6 > 0 nên để 6/(2x-1)min thì (2x-1) là ƯSC âm lẻ lớn nhất của 6 với x nguyên âm=> (2x-1) = -1
nhưng (2x-1) = -1 (theo (*)) lại ứng với x = 0 ma x nguyên nên loại trường hợp này nên:
2x-1 = -3 (theo (*)) <=> x = -1 khi đó Amin = 1 + 6/(-1) = -5.
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
b) A là một số nguyên ⇔ (x – 2) ⋮ ( x + 5)
Ta có: x – 2 = [(x + 5) – 7] ⋮ ( x + 5) ⇔ 7 ⋮ ( x + 5) ⇔ x + 5 là ước của 7
x + 5 ∈ { 1 ; -1 ; 7 ; -7 }
x ∈ { -4 ; -6 ; 2 ; -12 }
#)Giải :
1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)
b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)
ĐKXĐ: \(x\ne3\)
Với \(x\ne3\), ta có:
\(A=\dfrac{2x-5}{x-3}\) \(=\dfrac{2x-6+1}{x-3}\) \(=2+\dfrac{1}{x-3}\)
Để A nguyên thì \(\dfrac{1}{x-3}\) nguyên
\(\Leftrightarrow1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Leftrightarrow x=\left\{4;2\right\}\)
Vậy với x ={4; 2} thì A là một số nguyên.
ĐKXĐ: \(x\ne3\)
Để A là một số nguyên thì \(2x-5⋮x-3\)
\(\Leftrightarrow2x-6+1⋮x-3\)
mà \(2x-6⋮x-3\)
nên \(1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)(thỏa mãn ĐKXĐ)
Vậy: Để A nguyên thì \(x\in\left\{4;2\right\}\)