cho A=1+5^2+5^3+,,,+5^98+5^99 tim so du khi chia A cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi sai đề à
Mình chữa nhé
A=5^1+5^2+5^3+.......+5^98+5^99
5A=5^2+5^3+5^4+......+5^98+5^99+5^100
5A-A=
(5^2+5^3+5^4+.....+5^98+5^99+5^100)-(5^1+5^2+5^3+......+5^98+5^99)
4A=5^100-5^1
A=5^100-5^1:4
\(A=\left(1+5+5^2\right)+....+\left(5+1+5^2\right).5^{97}+5^{99}\)\(A=31+....+5^{97}.31+5^{99}\)
ta thấy \(5^{99}=125^{33}\)
mà 125 chia 31 dư 1
suy ra 125^33 chia 31 dư 1
suy ra 5^99 chia 31 dư 1
Vậy A chia 31 dư 1
Giải:
Gọi số cần tìm là A. Khi đó A + 2 là số chia hết cho 3; 5 và 7.
Vậy số nhỏ nhất chia hết cho 3; 5; 7 là: 3 x 5 x 7 = 105
Số cần tìm là: 105 - 2 = 103
ĐS: 103
ta thấy:
a-1 chia hết cho 3 =>a+2 chia hết cho 3
a-3 chia hết cho 5 =>a+2 chia hết cho 5
a-5 chia hết cho 7 =>a+2 chia hết cho 7
=> a+2 thuộc BC(3;5;7) và vì a+2 là số tự nhiên nhỏ nhất chia hết cho 3;5;7 nên a thuộc BCNN(3;5;7)
ta có :
3=3
5=5
7=7
=>BCNN(3;5;7)=3.5.7=105
=> a+2=105
=> a = 105-2
=> a =103
Lời giải:
$A=1+5+5^2+5^3+...+5^{98}+5^{99}$
$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+...+5^{97})$
$=1+31(5+5^4+....+5^{97})$
$\Rightarrow A$ chia $31$ dư $1$
A=(1+5+52)+....+(5+1+52).597+599A=(1+5+52)+....+(5+1+52).597+599A=31+....+597.31+599A=31+....+597.31+599
ta thấy 599=12533599=12533
mà 125 chia 31 dư 1
suy ra 125^33 chia 31 dư 1
suy ra 5^99 chia 31 dư 1
Vậy A chia 31 dư 1