K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM: 

$(a^2+b^2)^2=(a+b)^2\leq 2(a^2+b^2)\Rightarrow a^2+b^2\leq 2$

Tiếp tục áp dụng BĐT AM-GM:

\(P=a^4+b^4+\frac{2020}{(a^2+b^2)^2}\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\). Ta có:

\(\frac{(a^2+b^2)^2}{2}+\frac{8}{(a^2+b^2)^2}\geq 2\sqrt{\frac{(a^2+b^2)^2}{2}.\frac{8}{(a^2+b^2)^2}}=4\)

\(\frac{2012}{(a^2+b^2)^2}\geq \frac{2012}{2^2}=503\) do $a^2+b^2\leq 2$

Do đó: $P\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\geq 4+503=507$

Vậy $P_{\min}=507$. Giá trị này đạt tại $a=b=1$

 

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

NV
27 tháng 12 2020

Tử, mẫu không đồng bậc

Đề sai hoặc thiếu điều kiện

27 tháng 12 2020

tử cộng thêm c^2 bớts c^2

tách tử theo mẫu

cô si mẫu

11 tháng 1 2021

Đặt \(\dfrac{b}{a}=x;\dfrac{c}{b}=y\).

Ta có: \(P=\dfrac{1}{\left(\dfrac{a+b}{a}\right)^2}+\dfrac{1}{\left(\dfrac{b+c}{b}\right)^2}+\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{1}{4}\)

\(P=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}+\dfrac{xy}{4}\).

Ta có bđt quen thuộc: \(\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}\ge\dfrac{1}{xy+1}\) (bạn xem cm ở đây).

Do đó \(P\ge\dfrac{1}{xy+1}+\dfrac{xy+1}{4}-\dfrac{1}{4}\ge1-\dfrac{1}{4}=\dfrac{3}{4}\).

Đẳng thức xảy ra khi x = y = 1 tức a = b = c. 

Vậy...

NV
11 tháng 1 2021

BĐT phụ kia có 1 cách chứng minh rất hay mà không cần đến biến đổi tương đương với mũ to:

\(\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2}+\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{y}{x}}\right)^2}\ge\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{x}{y}\right)}+\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{y}{x}\right)}=\dfrac{1}{1+xy}\)

22 tháng 12 2021

\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)

Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)

\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)

 

27 tháng 5 2022

áp dụng bất đẳng thức: 1+b2>=2b. tương tự.....

ad bđt cauchy: a/b+b/c+c/a>=3∛a/b.b/c.c/a=3

P>=\(\dfrac{2ab}{bc}\)+\(\dfrac{2bc}{ca}\)+\(\dfrac{2ca}{ab}\) =2(\(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)\(\dfrac{c}{a}\))>=2.3=6

Pmin khi a=b=c=1

13 tháng 6 2022

Áp dụng bđt : \(1+b^2>=2b\)

bđt cauchy : \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>3\sqrt[3]{}\) a\b . b\c . c\a = 3

NV
15 tháng 4 2022

Biểu thức này chỉ có max, không có min

NV
20 tháng 5 2021

\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)

\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)

Cộng vế với vế: 

\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{512}{27}\)

Dấu "=" xảy ra khi \(a=b=4\)

22 tháng 12 2021

\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)=\dfrac{1-a+b}{b}+\dfrac{1-b+a}{a}\)

Vì \(a^2+b^2=1\) và \(a,b>0\Leftrightarrow0< a< 1;0< b< 1\Leftrightarrow1+a-b>0;1-b+a>0\)

\(\Leftrightarrow A\ge2\sqrt{\dfrac{\left(1-a+b\right)\left(1-b+a\right)}{ab}}=2\sqrt{\dfrac{1-a^2-b^2+2ab}{ab}}=2\sqrt{2}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\\dfrac{1-a+b}{b}=\dfrac{1-b+a}{a}\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)