\(A=\dfrac{1}{a}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)=\dfrac{1-a+b}{b}+\dfrac{1-b+a}{a}\)

Vì \(a^2+b^2=1\) và \(a,b>0\Leftrightarrow0< a< 1;0< b< 1\Leftrightarrow1+a-b>0;1-b+a>0\)

\(\Leftrightarrow A\ge2\sqrt{\dfrac{\left(1-a+b\right)\left(1-b+a\right)}{ab}}=2\sqrt{\dfrac{1-a^2-b^2+2ab}{ab}}=2\sqrt{2}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\\dfrac{1-a+b}{b}=\dfrac{1-b+a}{a}\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

8 tháng 7 2017

\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le3\)

\(M=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(a+b+c\right)+\dfrac{9}{a+b+c}\)

\(=2\left[a+b+c+\dfrac{9}{a+b+c}\right]-\dfrac{9}{a+b+c}\ge2.\sqrt{9}-\dfrac{9}{3}=6-3=3\)Min = 3 khi a=b=c =1

17 tháng 7 2017

mk cx ra luôn luk đấy giống bạn cảm ơn bạn nhiều nha !

eoeo

16 tháng 5 2017

a/ ĐKXĐ: \(x>0;x\ne1\)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

= \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

= \(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\)

= \(\dfrac{x}{\sqrt{x}-1}\)

b/ Với \(x>0;x\ne1\)

Để P>2 \(\Leftrightarrow\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow\dfrac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\)

Ta có: \(\left(\sqrt{x}-1\right)^2>0\) với mọi \(x>0,x\ne1\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+1>0\) với mọi x

Khi đó, \(\dfrac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\) \(\Leftrightarrow\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Vậy để P>2 thì x>1

16 tháng 5 2017

c/ với \(x>0,x\ne1\)

Ta có: \(\dfrac{x}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2+1+2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

= \(\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\)

Áp dụng bđt Co-si ta có:

\(\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}\ge2\)

\(\Rightarrow\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\)

\(\Leftrightarrow x-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Vậy GTNN của P là 4 khi x=4

9 tháng 7 2018

\(1a.\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=21-2\sqrt{21}+2\sqrt{21}=21\) \(b.\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}=11+2\sqrt{30}-2\sqrt{30}=11\)

\(2a.\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}.b^2}+\sqrt{\dfrac{a^2}{b^2}.\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+b\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=\left(2+b\right)\sqrt{\dfrac{a}{b}}\) \(b.\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{\left(x-1\right)^2}}.\sqrt{\dfrac{\left(2\sqrt{m}x-2\sqrt{m}\right)^2}{81}}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{\text{|}2\sqrt{m}x-2\sqrt{m}\text{|}}{9}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{2\sqrt{m}\text{|}x-1\text{|}}{9}=\dfrac{2m}{9}\) \(3a.VP=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1=VT\)

KL : Vậy đẳng thức được chứng minh.

\(b.VP=\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{\text{|}a+b\text{|}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{a+b}=\text{|}a\text{|}=VT\)

KL : Vậy đẳng thức được chứng minh .

P/s : Dài v ~

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

15 tháng 12 2018

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)

Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)

hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)

Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)