K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải :

M = 1 + 4 + 4^2 + 4^3 +...+ 4^100

= 1 + ( 4+4^2) + ( 4^3+4 ^4) +... + ( 4^99+4^100)

= 1+4 . (1+4) + 4^3 . ( 1+4) +...+4^99 . (1+4)

=1+4.5 + 4^3.5+... + 4^99.5

= 1 +5. ( 4 + 4^3+...+4^99)

Vì 5. ( 4+ 4^3 +...+ 4^99) chia hết cho 5.

Mà 1 không chia hết cho 5.

=> M không chia hết cho 5.

25 tháng 12 2020

Cảm ơn ! Quên chưa cảm ơn trước :>

19 tháng 11 2023

Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người 

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

15 tháng 12 2023

Help me please! 

15 tháng 12 2023

A = 2 + 22 + 23 + 24 + ... + 2100

Xét dãy số: 1; 2; 3; 4; ....; 100

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (100 - 1): 1 + 1   = 100

vì 100 : 3  = 33 dư 1 nên khi nhóm 3 số hạng liên tiếp của A thành nhóm thì

A = (2100 + 299 + 298) + (297 + 296 + 295) +...+ (24 + 23 + 22) + 2

A = 297.(23 + 22 + 2) + 294.(23 + 22 + 2) +...+ 2.(23 + 22 + 2) + 2

A = 297.14 + 294.14 + ... + 2.14 + 2

A = 14.(297 + 294 + ... + 2) + 2 

   14 ⋮ 14;  2 không chia hết cho 14 

A không chia hết cho 14 

 

 

25 tháng 9 2015

a) Gọi X là 1 số bất kỳ. Ta có
=> X+(X+1)+(X+2)+(X+3)+(X+4)
=> 4X+1+2+3+4
=> 4X+10
Theo đề bài : 4X+10 chia hết cho 4
=> 4X chia hết cho 4 và 10 chia hết cho 4 ( vô lí )
=>........
 
b) tương tự
=>5X+15 chia hết cho 5
=> 5X chia hết cho 5 và 15 chia hết cho 5 ( hợp lí )
=>........

10 tháng 8 2023

Bài 1:

B = 1 + 2 + 3 + 4 + ... + 2001

= (2001 + 1) . (2001 - 1 + 1) : 2

= 2002 . 2001 : 2

= 2003001

Vậy B không chia hết cho 2

Bài 2:

*) Số 10¹⁰ + 8 = 10000000008

- Có chữ số tận cùng là 8 nên chia hết cho 2

- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9

Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9

*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)

- Có chữ số tận cùng là 5 nên chia hết cho 5

- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3

Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5

b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)

- Có chữ số tận cùng là 4 nên chia hết cho 2

- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9

Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9

10 tháng 8 2023

B1 :

\(B=1+2+3+4+...+2001\)

\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)

\(B=2001.2002:2=2003001\)

- Tận cùng là 1 nên B không chia hết cho 2

- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9

- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)

 

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg

28 tháng 4 2022

\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)

\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)

\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)