K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

\((\sqrt{x} -1)^2=(\frac{1}{2})^2\) (ĐK: \(x\geq0\))

TH1: \(\sqrt{x}-1=\frac{1}{2}\)

\(=>\sqrt{x}=\frac{3}{2}\)

\(=> x=\frac{9}{4}\)(t/m)

TH2:\(\sqrt{x}-1=\frac{-1}{2}\)

\(=>\sqrt{x}=\frac{1}{2}\)

\(=> x=\frac{1}{4}\)(t/m)

 

a: \(=\left(\dfrac{11}{17}+\dfrac{6}{17}\right)+\left(-\dfrac{5}{13}-\dfrac{8}{13}\right)+\dfrac{11}{25}\)

=11/25+1-1=11/25

b: \(=\sqrt{36\cdot\dfrac{1}{4}}+11=9+11=20\)

c: \(=\left(0.25\right)^8\cdot4^8=\left(0.25\cdot4\right)^8=1\)

d: \(=2.8\left(-6.5-3.5\right)=-10\cdot2.8=-28\)

24 tháng 12 2022

\(\left(0.25\right)^{10}.4^{10}+\sqrt{5^2-3^2}\)
\(=0.4^{10}+\sqrt{25-9}\)
\(=0+\sqrt{16}=0+4=4\)

\(\dfrac{5}{20}+\dfrac{18}{11}-25\%-\left(\dfrac{18}{11}-\dfrac{4}{9}\right)\)
\(=\dfrac{5}{20}+\dfrac{18}{11}-\dfrac{1}{4}-\dfrac{18}{11}+\dfrac{4}{9}\)
\(=\left(\dfrac{5}{20}-\dfrac{1}{4}\right)+\left(\dfrac{18}{11}-\dfrac{18}{11}\right)+\dfrac{4}{9}\)
\(=0+0+\dfrac{4}{9}=\dfrac{4}{9}\)

24 tháng 12 2022

cày ít thoi cho bọn toi cày đuy mò:)

6 tháng 10 2020

đk: \(x>0;x\ne9\)

a) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

b) Với x=0,25 ta có: \(P=\frac{\left(\sqrt{0,25}-1\right)^2}{\sqrt{0,25}}=0,5\)

c) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-2=2-2=0\)

Dấu '=' xảy ra khi x=1 (tmdk). Vậy Min p =0 khi và chỉ khi x=1

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v