\(\left(\sqrt{x}-1\right)^2=0.25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{11}{17}+\dfrac{6}{17}\right)+\left(-\dfrac{5}{13}-\dfrac{8}{13}\right)+\dfrac{11}{25}\)
=11/25+1-1=11/25
b: \(=\sqrt{36\cdot\dfrac{1}{4}}+11=9+11=20\)
c: \(=\left(0.25\right)^8\cdot4^8=\left(0.25\cdot4\right)^8=1\)
d: \(=2.8\left(-6.5-3.5\right)=-10\cdot2.8=-28\)
\(\left(0.25\right)^{10}.4^{10}+\sqrt{5^2-3^2}\)
\(=0.4^{10}+\sqrt{25-9}\)
\(=0+\sqrt{16}=0+4=4\)
\(\dfrac{5}{20}+\dfrac{18}{11}-25\%-\left(\dfrac{18}{11}-\dfrac{4}{9}\right)\)
\(=\dfrac{5}{20}+\dfrac{18}{11}-\dfrac{1}{4}-\dfrac{18}{11}+\dfrac{4}{9}\)
\(=\left(\dfrac{5}{20}-\dfrac{1}{4}\right)+\left(\dfrac{18}{11}-\dfrac{18}{11}\right)+\dfrac{4}{9}\)
\(=0+0+\dfrac{4}{9}=\dfrac{4}{9}\)
đk: \(x>0;x\ne9\)
a) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
b) Với x=0,25 ta có: \(P=\frac{\left(\sqrt{0,25}-1\right)^2}{\sqrt{0,25}}=0,5\)
c) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-2=2-2=0\)
Dấu '=' xảy ra khi x=1 (tmdk). Vậy Min p =0 khi và chỉ khi x=1
\((\sqrt{x} -1)^2=(\frac{1}{2})^2\) (ĐK: \(x\geq0\))
TH1: \(\sqrt{x}-1=\frac{1}{2}\)
\(=>\sqrt{x}=\frac{3}{2}\)
\(=> x=\frac{9}{4}\)(t/m)
TH2:\(\sqrt{x}-1=\frac{-1}{2}\)
\(=>\sqrt{x}=\frac{1}{2}\)
\(=> x=\frac{1}{4}\)(t/m)