Cho: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\). CMR: trong 3 số a, b, c tồn tại 2 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thật là của lp 7 ko ak
Bài làm
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\Rightarrow a^2.c+b^2.a+c^2.b\)
\(=b^2.c+c^2.a+a^2.b\)
\(\Leftrightarrow a^2.\left(c-b\right)+a.\left(b^2-c^2\right)+b.c.\left(c-d\right)=0\)
\(\Leftrightarrow a^2.\left(c-b\right)-a\left(c-b\right).\left(c+b\right)+b.c.\left(c-b\right)=0\)
\(\Leftrightarrow\left(c-b\right).\left(a^2-a.c-a.b+b.c\right)=0\)
\(\Leftrightarrow\left(c-b\right).a.\left(a-c\right)-b.\left(a-c\right)=0\)
\(\Leftrightarrow\left(c-d\right).\left(a-c\right).\left(a-b\right)=0\)
=> \(a=b\) hoặc b = c hoặc a = c (ĐPCM)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.
Câu hỏi của không cần biết - Toán lớp 8 - Học toán với OnlineMath
`1/a+1/b+1/c=1/(a+b+c)`
`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`
`<=>(a+b)(ab+ac+bc+c^2)=0`
`<=>(a+b)(a+c)(b+c)=0`
`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$
`=>` PT luôn tồn tại 2 số đối nhau
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
Đặt \(\dfrac{a^3}{c}=x;\dfrac{b^3}{a}=y;\dfrac{c^3}{b}=z\)
Suy ra \(\dfrac{a^3}{c}.\dfrac{b^3}{a}.\dfrac{c^3}{b}=xyz\Leftrightarrow xyz=\left(abc\right)^2=1\)
Vậy ta có \(\dfrac{c}{a^3}=\dfrac{1}{x};\dfrac{a}{b^3}=\dfrac{1}{y};\dfrac{b}{c^3}=\dfrac{1}{z}\)
Theo đề bài ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{xy+xz+yz}{xyz}=xy+xz+yz\)
Ta lại có \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xz-yz-xy+x+y+z-1=1-\left(xz+yz+xy\right)+x+y+z-1=-\left(x+y+z\right)+\left(x+y+z\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)
_ x=1\(\Leftrightarrow\dfrac{a^3}{c}=1\Leftrightarrow a^3=c\left(1\right)\)
Tương tự:
y=1\(\Leftrightarrow\)\(b^3=a\)(2)
z=1\(\Leftrightarrow c^3=b\)(3)
Từ (1),(2),(3)
Vậy trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong 2 số còn lại
`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`
`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`
`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`
`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`
`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`