Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`
`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`
`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`
`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`
`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`
Câu hỏi của Linh Suzu - Toán lớp 7 | Học trực tuyến, nhớ tìm trước khi hỏi, lần sau t ko tìm đâu
Giả sử trong 4 số a;b;c;d không tồn tại 2 số bằng nhau
Không mất tính tổng quát ta giả sử a < b < c < d
=> a2 < b2 < c2 < d2 (do a;b;c;d nguyên dương)
=> \(\frac{1}{a^2}>\frac{1}{b^2}>\frac{1}{c^2}>\frac{1}{d^2}\)
\(\Rightarrow\frac{4}{a^2}>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=> a2 < 4
=> a < 2 (1)
Lại có: \(\frac{1}{a^2}\)< 1 (theo đê bai)
=> a2 > 1
=> a > 1 (do a nguyên dương) (2)
Từ (1) và (2) => 1 < a < 2, mâu thuẫn với đề là a nguyên dương
Như vậy trong 4 số đã cho luôn tồn tại ít nhất 2 số bằng nhau (đpcm)
Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
=> \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
=> \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)
Giả sử tồn tại a,b thỏa mãn đề bài
Vì : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\Rightarrow\left(b-a\right)\left(a-b\right)=ab\)
\(\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\Rightarrow-\left(a-b\right)^2=ab\)
Vì a,b nguyên dương \(\Rightarrow ab>0\)
Mà : \(\left(a-b\right)^2\le0\forall a,b\)
\(\Rightarrow-\left(a-b\right)^2\le0\Rightarrow\) Mâu thuẫn => G/s sai
Vậy không tồn tại 2 số a,b thỏa mãn đề bài
a~ tớ nhầm nha chỗ :"Mà :..." ý fai là \(\left(a-b\right)^2\ge0\forall a,b\)
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)
\(=\dfrac{a+b+c+2d}{d}-1\)
⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Nếu a+b+c+d=0
⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)
Thay vào M, ta có:
\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)
Nếu a+b+c+d ≠0
⇒ \(a=b=c=d\)
Thay vào M, ta có
\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)
Ta có:
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)
Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)
~ Học tốt!~
2.
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)
Đặt a/2019=b/2021=c/2023=k
=>a=2019k; b=2021k; c=2023k
(a-c)^2/4=(2023k-2019k)^2/4=(4k)^2/4=4k^2
(a-b)(b-c)=(2019k-2021k)(2021k-2023k)=4k^2
=>(a-c)^2/4=(a-b)(b-c)
có thật là của lp 7 ko ak
Bài làm
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\Rightarrow a^2.c+b^2.a+c^2.b\)
\(=b^2.c+c^2.a+a^2.b\)
\(\Leftrightarrow a^2.\left(c-b\right)+a.\left(b^2-c^2\right)+b.c.\left(c-d\right)=0\)
\(\Leftrightarrow a^2.\left(c-b\right)-a\left(c-b\right).\left(c+b\right)+b.c.\left(c-b\right)=0\)
\(\Leftrightarrow\left(c-b\right).\left(a^2-a.c-a.b+b.c\right)=0\)
\(\Leftrightarrow\left(c-b\right).a.\left(a-c\right)-b.\left(a-c\right)=0\)
\(\Leftrightarrow\left(c-d\right).\left(a-c\right).\left(a-b\right)=0\)
=> \(a=b\) hoặc b = c hoặc a = c (ĐPCM)