(2+6+8+...+2018)^2. Tìm 3 chữ số cuối của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
Có \(\left|x-2\right|\ge0;\left|8-y\right|\ge0\)
\(\Rightarrow P\ge0+0+2018=2018\)
Dấu "=" xảy ra khi
\(\orbr{\begin{cases}x-2=0\\8-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy Min P = 2018 ,<=> x = 2 ; y = 8
Ta có :
\(\hept{\begin{cases}\left|x-2\right|\ge0\forall x\\\left|-y+8\right|\ge0\forall y\end{cases}}\)
\(\Rightarrow P=\left|x-2\right|+\left|-y+8\right|+2018\ge2018\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|-y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\8-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
Vậy GTNN của P là : \(2018\Leftrightarrow x=2;y=8\)
Ta có: (3y - 6)2 \(\ge\)0 \(\forall\)y
=> (3y - 6)2 + 2 \(\ge\)2 \(\forall\)y
=> \(\frac{2018}{\left(3y-6\right)^2+2}\le1009\forall y\)
hay A \(\le\)1009 \(\forall\)y
Dấu "=" xảy ra khi: 3y - 6 = 0 <=> 3y = 6 <=> y = 2
Vậy Max của A = 1009 tại y = 2
a bn tự lm nha mk lm đỡ bn phần b
b=1.99+1.98+3.97+...+98.2+99.1
= 1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
= 1.99+2.99-1.2+3.99-2.3+...98.99-97.98+99.99-99.98
=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+...+98.99)
=99.(1+2+3+...+98+99)-(1.2+2.3+...+98.99)
=99.4950-(1.2+2.3+...+98.99)
=490050-(1.2+2.3+...+98.99)
b=1.2+2.3+...+98.99
3b=1.2.3+2.3.3+...+98.99.3
3b=1.2.3+2.3.(4-1)+...+98.99.(100-97)
3b=1.2.3+2.3.4+2.3.1+...+98.99.100+98.00.97
3b=490050-(98.99.100):3
b=490050-323400
b=166650
tk mk nha
=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)
=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)
=99.(1+99).99/2-98.99.100/3
=99.50.99-98.33.100
=490050-323400
=166650
\(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)
Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
\(\left|y+3\right|>=0\forall y\)
Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)
=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)
=>\(P>=2022\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y+3=0
=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)