Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2019\right|-\left|x-2018\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)ta có :
\(A\ge\left|x-2019-x+2018\right|=\left|-1\right|=1\)
Vậy ................
Nhầm Chỗ A
Sửa thành \(A\le\left|x-2019-x+2018\right|=\left|-1\right|=1\)
1) \(\left|1,4+x\right|\ge0\Leftrightarrow-\left|1,4+x\right|\le0\Rightarrow\left|1,4+x\right|-2\le-2\Leftrightarrow A\le-2\Rightarrow MaxA=-2\Leftrightarrow x=-1,4\)
\(\left|5x-2\right|\ge0\Leftrightarrow-\left|5x-2\right|\le0;\left|3y+12\right|\ge0\Leftrightarrow-\left|3y+12\right|\le0\Rightarrow4-\left|5x-2\right|-\left|3y+12\right|\le4\Rightarrow B\le4\Rightarrow MaxB=4\)
<=> x=2/5 và y=-4
Bài 1 :A có GTLN <=> -|1,4 + x| có GTLN
=> x không tồn tại.
Bài 2 : B có GTLN <=> | 5x - 2 | - | 3y + 12 | có GTNN
<=> | 5x - 2 | - | 3y + 12 | = 0
Vậy GTLN của B = 4 - 0 = 4
Có I x - \(\frac{2}{5}\)I \(\ge\)0 \(\forall x\in R\)
=>- I x-\(\frac{2}{5}\)I \(\le0\forall x\in R\)
=>- I x- \(\frac{2}{5}\)I +2018\(\le\)2018\(\forall x\in R\)
Dấu "=" xaỷ ra
\(\Leftrightarrow\)x-\(\frac{2}{5}\)=0
\(\Leftrightarrow\)x=\(\frac{2}{5}\)
vậy GTLN của bt là 2018 khi và chỉ khi x=\(\frac{2}{5}\)
M = - | x - 2/5 | + 2018
ta thấy | x - 2/5 | >= 0 nhỏ nhất = 0
Suy ra M lớn nhất là bằng 2018 khi và chỉ khi x - 2/5 = 0 <=> x = 2/5
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu
Ta có: (3y - 6)2 \(\ge\)0 \(\forall\)y
=> (3y - 6)2 + 2 \(\ge\)2 \(\forall\)y
=> \(\frac{2018}{\left(3y-6\right)^2+2}\le1009\forall y\)
hay A \(\le\)1009 \(\forall\)y
Dấu "=" xảy ra khi: 3y - 6 = 0 <=> 3y = 6 <=> y = 2
Vậy Max của A = 1009 tại y = 2