K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(A=-\left|3x-3\right|-\left(4x-4\right)^2-11\le-11\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x-3=0\\4x-4=0\end{matrix}\right.\Leftrightarrow x=1\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

19 tháng 12 2021

\(A\ge11\forall x\)

Dấu '=' xảy ra khi x=0

19 tháng 12 2021

\(A\ge11\forall x\)

Dấu '=' xảy ra khi x=0

10 tháng 10 2016

Có: \(\left(3x-2\right)^2\ge0\)

=> \(\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11}\)

Vậy GTLN của A là \(\frac{13}{11}\) khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)

10 tháng 10 2016

Ta có:

\(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(3x-2\right)^2+11\ge11\)

\(\Rightarrow A\le\frac{13}{11}\)

Dấu = khi \(3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy MaxA=\(\frac{13}{11}\Leftrightarrow x=\frac{2}{3}\)

2 tháng 11 2019

\(A=\frac{13}{\left(3x-2\right)^2+11}\)

Vì \(\left(3x-2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x-2\right)^2+11\ge0+11;\forall x\)

\(\Rightarrow\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11};\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\)

                       \(\Leftrightarrow x=\frac{2}{3}\)

Vậy Max\(A=\frac{13}{11}\)\(\Leftrightarrow x=\frac{2}{3}\)

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)