K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(A=-\left|3x-3\right|-\left(4x-4\right)^2-11\le-11\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x-3=0\\4x-4=0\end{matrix}\right.\Leftrightarrow x=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

10 tháng 10 2016

Có: \(\left(3x-2\right)^2\ge0\)

=> \(\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11}\)

Vậy GTLN của A là \(\frac{13}{11}\) khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)

10 tháng 10 2016

Ta có:

\(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(3x-2\right)^2+11\ge11\)

\(\Rightarrow A\le\frac{13}{11}\)

Dấu = khi \(3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy MaxA=\(\frac{13}{11}\Leftrightarrow x=\frac{2}{3}\)

2 tháng 11 2019

\(A=\frac{13}{\left(3x-2\right)^2+11}\)

Vì \(\left(3x-2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x-2\right)^2+11\ge0+11;\forall x\)

\(\Rightarrow\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11};\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\)

                       \(\Leftrightarrow x=\frac{2}{3}\)

Vậy Max\(A=\frac{13}{11}\)\(\Leftrightarrow x=\frac{2}{3}\)

19 tháng 12 2015

1. 0 giá trị ... Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng không tuy nhiên giá trị cho trước lại không giống nhau nên sẽ không có số nào thỏa mãn .
2. Mình không chắc lắm nhưng mình nghĩ x=0.
3.      => 3x2-51=-24 => x2= ( -24+51 ) :3 =9 => x= +3 và -3
      hoặc 3x2-51=24 => x2= ( 24+51 ) :3 =25 => x=+5 hoặc -5
Vậy có 4 giá trị thỏa mãn.
4.    (1/-2)^40=(1/2)^40=[(1/2)^10]^4=(1/1024)^4
       (1/-10)^12=(1/10)^12=[(1/10)^3]^4=(1/1000)^4
=> B <A
5.    41007.52014= (22)1007.52014 ==22.1007.52014=22004.52014=102004 
=> có 2015 chữ số