K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có

AB=AD

góc A chung

Do đó: ΔAMB=ΔAPD

=>AM=AP

Xét ΔAMH vuông tại M và ΔAPH vuông tại P có

AH chung

AM=AP

Do đó: ΔAMH=ΔAPH

=>góc MAH=góc PAH

=>AH là phân giác của góc BAD(1)

ΔABD cân tại A

mà AO là trung tuyến

nên AO là phân giác của góc BAD(2)

Từ (1), (2) suy ra A,H,O thẳng hàng

b: Xét ΔCDB có

DQ,BN là đường cao

DQ cắt BN tại K

Do đó; K là trực tâm của ΔCDB

=>CK vuông góc BD

ΔCBD cân tại C

mà CO là trung tuyến

nên CO vuông góc BD

=>C,K,O thẳng hàng

C,K,O thẳng hàng

A,H,O thẳng hàng

A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)

Do đó: C,K,O,H,A thẳng hàng

=>A,H,K,C thẳng hàng

=>HK vuông góc DB

c: Xét tứ giác BHDK có

BH//DK

BK//DH

Do đó: BHDK là hình bình hành

mà HK vuông góc BD

nên BHDK là hình thoi

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

27 tháng 7 2020

1/

Xét tam giác AOD và tam giác BOC có 

^CBD=^ADB; ^ACB=^CAD

=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)

2/

Ta có ^ABC=^ADC (2 góc đối hình bình hành)

Xét hai tam giác vuông BCE và tam giác vuông DCG có 

^ECB=^GDC (cùng bù với ^ABC=^ADC)

=> tam giác BCE đồng dạng với tam giác DCG

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF