K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

* p = 2 thì 4p^2 + 1 = 25 không là SNT

* p = 3 thì 6p^2 + 1 = 55 không là SNT

* p = 5 thì 4p^2 + 1=101 và 6p^2 + 1 = 151 là SNT

Vậy p = 5 thỏa điều kiện đề bài.

* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.

Khi: p = 5k ± 1thì

4p^2 + 1 = 4(25k^2 ± 10k + 1) + 1= 4.25k^2 ± 4.10k + 5 > 5 và chia hết cho 5

Khi p = 5k ± 2 thì:

6k^2 + 1 =6(25k^2 ± 10k + 4) + 1 = 6.25k^2 ± 6.10k + 25 > 5 và chia hết cho 5

Vậy khi p>5 thì 4p^2+1 và 6p^2+1 không đồng thời là SNT.

=> p = 5 là SNT cần tìm.

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

28 tháng 10 2023

Bài 18:

Ta có:

\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)

\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)

Mà: \(2014< 2015\)

\(\Rightarrow2015^{2014}< 2015^{2015}\)

\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)

\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)

Vậy: ... 

28 tháng 10 2023

6 : (x-2)

2 tháng 8 2020

+) Với \(p=2\) \(\Rightarrow\hept{\begin{cases}24.2^2+1=97\\3.2+1=7\end{cases}}\)

Vì \(97\) và \(7\) là các số nguyên tố nên \(p=2\)  (thỏa mãn)

+) Với \(p\) là số nguyên tố lớn hơn 2, suy ra \(p\) có dạng \(2k+1\) với k là số tự nhiên khác 0

\(\Rightarrow3p+1=3.\left(2k+1\right)+1=6k+3+1=6k+4⋮2\)

Mà \(k\) lớn hơn 0 nên \(6k+4>2\) nên \(3p+1\) là hợp số (loại)

Vậy \(p=2\).

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

21 tháng 10 2015

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

25 tháng 4 2020

hay đó

6 tháng 8 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6

Chúc bn hok tốt

6 tháng 8 2016

+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2

Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại

=> p = 3k + 1

=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)

Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)

Bài này là chứng minh chứ ko fai tìm nha bn

Bài 1: 

Trường hợp 1: p=2 thì p+2=4(loại)

Trường hợp 2: p=3 thì p+2=5; p+6=9(loại)

Trường hợp 3: p=5

=>p+2=5; p+6=11; p+8=13(nhận)