K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

+) Với \(p=2\) \(\Rightarrow\hept{\begin{cases}24.2^2+1=97\\3.2+1=7\end{cases}}\)

Vì \(97\) và \(7\) là các số nguyên tố nên \(p=2\)  (thỏa mãn)

+) Với \(p\) là số nguyên tố lớn hơn 2, suy ra \(p\) có dạng \(2k+1\) với k là số tự nhiên khác 0

\(\Rightarrow3p+1=3.\left(2k+1\right)+1=6k+3+1=6k+4⋮2\)

Mà \(k\) lớn hơn 0 nên \(6k+4>2\) nên \(3p+1\) là hợp số (loại)

Vậy \(p=2\).

28 tháng 4 2018

Có \(p\ge2\)và p là số nguyên tố

=> \(3p^2+1\ge13\)

Mà \(3p^2+1\)là số nguyên tố và chỉ có một số nguyên tố chẵn duy nhất là 2

=> \(3p^2+1\)là số nguyên tố lẻ

=> p phải là số nguyên tố chẵn để  \(3p^2+1\)là số nguyên tố lẻ

=> \(p=2\)

8 tháng 11 2014

phải là 2p+1 cung là số nguyên tố chứ

Đề sai rùi bạn ạ!

12 tháng 12 2018

        Xét p=2k+1

Ta có : 3p+7=3(2k+1)+7 = 6k+10 =2(3k+5) chia hết cho 2

       Vì p là số nguyên tố nên p lớn hơn hoặc bằng 2 . Suy ra : 3p+7 >2

=> 3p+7 là hợp số . Mà 3p+7 là số nguyên tố 

=> p khác 2k+1

Suy ra : p=2k . Mà p là số nguyên tố nên p =2

Khi đó 3p+7=3x2 +7=13 là số nguyên tố

Vậy p=2 thì 3p+7 là số nguyên tố

TH1: p=2

=>p+1=3 và 3p+1=6+1=7

=>Nhận

TH2: p=2k+1

p+1=2k+1+1=2k+2=2(k+1) chia hết cho 2

=>Loại

Vậy: p=2

20 tháng 11 2017

a, p = 2

b, p = 3

k mk nha

Trả lời :.....................

p = 3.....................

Hk tốt......................

23 tháng 9 2018

a) Xét:

\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)

+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so 

Vay p=2

b) Xét:'

\(+p=2\Rightarrow p+8=10\left(ktm\right)\)

\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)

\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)

\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)

\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)

Vay p=3
 

23 tháng 9 2018

a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.

Xét p = 2 => 3.2 + 5 = 11 (nhận)

b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.

=> p = 3 

16 tháng 12 2020

* p = 2 thì 4p^2 + 1 = 25 không là SNT

* p = 3 thì 6p^2 + 1 = 55 không là SNT

* p = 5 thì 4p^2 + 1=101 và 6p^2 + 1 = 151 là SNT

Vậy p = 5 thỏa điều kiện đề bài.

* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.

Khi: p = 5k ± 1thì

4p^2 + 1 = 4(25k^2 ± 10k + 1) + 1= 4.25k^2 ± 4.10k + 5 > 5 và chia hết cho 5

Khi p = 5k ± 2 thì:

6k^2 + 1 =6(25k^2 ± 10k + 4) + 1 = 6.25k^2 ± 6.10k + 25 > 5 và chia hết cho 5

Vậy khi p>5 thì 4p^2+1 và 6p^2+1 không đồng thời là SNT.

=> p = 5 là SNT cần tìm.