1.<>= a,4589 ....... 10 001 b,8000........7999+1
giúp mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(a-b\right)^2}{4}\)- 1 = (\(\frac{a-b}{2}\)- 1)(\(\frac{a-b}{2}\)+ 1)
a, A = 22001 + 2
A = \(\overline{200....2}\) (2001 chữ số 0)
Tổng các chữ số của A là : 2 + 0 x 2001 + 2 = 4 \(⋮̸\) 3; 9
A = \(\overline{..2}\) \(⋮\) 2; \(⋮̸\) 5
vậy 102001 + 2 chia hết cho 2 nhưng không chia hết cho 3; 5; 9
b, B = 102001 - 1
B = \(\overline{....9}\) \(⋮̸\) 2; 5
Tổng các chữ số của B là : 1 + 0 x 2001 + (-1) = 0 \(⋮\)3; 9
vậy 102001 - 1 chia hết cho 3; 9 nhưng không chia hết cho 2; 5
ĐKXĐ: x ≥ 0
Do -2 < 2
⇒ √x - 2 < √x + 2
⇒ (√x - 2)/(√x + 2) < 1
Vậy A < 1
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\dfrac{4}{\sqrt{x}+2}\left(dkxd:x\ge0\right)\)
Ta thấy: \(\sqrt{x}+2>0\forall x\ge0\)
\(\Rightarrow\dfrac{4}{\sqrt{x}+2}>0\forall x\ge0\)
\(\Rightarrow-\dfrac{4}{\sqrt{x}+2}< 0\forall x\ge0\)
\(\Rightarrow A=1-\dfrac{4}{\sqrt{x}+2}< 1\forall x\ge0\left(dpcm\right)\)
Có 5 gia đình chia đều cho 4 gia đình. mỗi gia đình được............bao gạo
A. 5/4 B.4/5 C.5/1
Áp dụng bất đẳng thức Cô - si ta có:
\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)
\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)
Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)
⇔ \(a=b=0,5\)
GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)
S=\(ab+\dfrac{1}{ab}\)
Ta có :
Áp dụng BĐT Cauchy(cô-sy),ta có
1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)
Đặt x=ab(x\(\le\dfrac{1}{4}\))
\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)
Áp dụng BĐT Cauchy (Cô -si):
\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)
Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)
Ta có:
\(\dfrac{1}{5}>\dfrac{1}{10}\\ \dfrac{1}{6}>\dfrac{1}{10}\\ ...\\ \dfrac{1}{9}>\dfrac{1}{10}\\ \Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{5}{10}=\dfrac{1}{2}.\)
Tương tự:
\(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}>\dfrac{5}{15}=\dfrac{1}{3}.\\ \dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}>\dfrac{3}{18}=\dfrac{1}{6}.\)
Cộng vế theo vế ta được \(B>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=1\left(đpcm\right)\)
a) 3500 + 200 = 3700
3700 - 200 = 3500
7100 + 800 = 7900
7900 - 8000 = 7100
4400 + 300 = 4700
4700 - 3000 = 4400
b) 6000 + 2000 = 8000
8000 - 6000 = 2000
8000 - 2000 = 6000
7000 + 3000 = 10 000
10 000 - 7000 = 3000
10 000 - 3000 = 7000
2000 + 8000 = 10 000
10 000 - 2000 = 8000
10 000 - 8000 = 2000
1. a) 4589 < 10 001
b) 8000 = 7999 + 1
1.<>= a,4589 < 10 001 b,8000 = 7999+1
~HT~