K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Cho tứ diện ABCD . Gọi G1,G2,G3 lần lượt là trọng tâm của các tam giác ABC,ACD,ABD . Chứng minh mặt phẳng (G1G2G3) // (BCD) 

18 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Và PQ //AD // BC (1)

Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra PQ // MN.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: EF = (AMND) ∩ (PBCQ)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tính

EF: CP ∩ EF = K ⇒ EF = EK + KF

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (∗) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta tính được KF = 2a/5

Vậy: Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

1 tháng 1 2018

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

30 tháng 8 2019

Đáp án D

Dễ thấy rằng:

Giả sử  S E ∩ A B = E ' ; S F ∩ C D = F '

Áp dụng định lý Ceva vào tam giác SAB có:

⇔ E ' A = E ' B ⇒ E '  là trung điểm của AB.

Chứng minh tương tự ta cũng có F ' là trung điểm của CD

⇒ E ' F ' là đường trung bình của hình thang ABCD

Áp dụng định lý Menelaus vào tam giác SBE’ với cát tuyến AEM có:

Chứng minh tương tự ta cũng có:

Áp dụng định lý Thales vào tam giác SE’F’ có:

22 tháng 11 2019

3 tháng 8 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của SC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.

Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.

Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)

⇒ CM // (SAB)

c) Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác vì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

OI ⊂ (BID) ⇒ SA // (BID)