K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

$A=\frac{(x+z)(z-y)(y-z)}{yz^2}=\frac{-(x+z)(y-z)^2}{yz^2}$

Vì $-x+y-z=0$ nên $-(x+z)=-y$

$y-z=x$

$\Rightarrow A=\frac{-yx^2}{yz^2}=\frac{-x^2}{z^2}$

Đến đây là kịch rồi bạn ạ, không tính được giá trị cụ thể của biểu thức A. Bạn xem lại đề.

 

14 tháng 3 2020

Ta có : 

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y

\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)

9 tháng 6 2021

\(a^2-2a+6b+b^2=-10\\ \Leftrightarrow a^2-2a+1+b^2+6b+9=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(1;-3\right)\)

9 tháng 6 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Leftrightarrow xy+yz+zx=0\\ \Rightarrow\left\{{}\begin{matrix}xy+yz=-zx\\xy+zx=-yz\\yz+zx=-xy\end{matrix}\right.\)

Ta có: 

\(A=\dfrac{xz+yz}{z^2}+\dfrac{xy+yz}{y^2}+\dfrac{xy+xz}{x^2}\\ =\dfrac{-xy}{z^2}+\dfrac{-xz}{y^2}+\dfrac{-yz}{x^2}\\ =-xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\\ =-xyz\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\right)\\ =0\)

19 tháng 9 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2xyz}{xyz}=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

8 tháng 5 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)

vậy A=-3