Tìm n thuộc Z để phân số A=4n-1/2n+3 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{4n-1}{2n+3}\)nhận giá trị nguyên thì
\(\Leftrightarrow\)4n-1 chia hết cho 2n+3
Ta có 4n-1=2(n-3)-5 chia hết cho 2n+3
\(\Rightarrow\)2n+3\(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
2n+3 | -1 | -5 | 1 | 5 |
2n | -2 | -4 | -1 | 1 |
Vậy n={-2;-4;-1;1} thì \(\frac{4n-1}{2n+3}\)là số nguyên
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
\(A=\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Vậy để A nguyên thì 2n+3\(\in\)Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n+3={1;-1;5;-5}
Ta có bảng sau
2n+3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy n={-1;-2;-4;1}
Vì \(\frac{4n+1}{2n+3}\) là số nguyên nên \(4n+1⋮2n+3\)
\(\Rightarrow4n+6-5⋮2n+3\)
\(\Rightarrow2\left(2n+3\right)-5⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm5\right\}\)
Nếu 2n + 3 = 1 thì n = -1
Nếu 2n + 3 = -1 thì n = -2
Nếu 2n + 3 = 5 thì n = 1
Nếu 2n + 3 = -5 thì n = -4
Vậy \(n\in\left\{-1;-2;1;-4\right\}\)
Để A là số nguyên thì
4n+1\(^._:\)2n+3
=>4n+6-5\(^._:\)2n+3
Vì 4n+6\(^._:\)2n+3
=>5\(^._:\)2n+3
=>2n+3\(\in\)Ư(5)={1;-1;5;-5}
Ta có bảng sau:
2n+3 | n |
1 | -1 |
-1 | -2 |
5 | 1 |
-5 | -4 |
KL: n\(\in\){-1;-2;1;-4}
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2