K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BH=4cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH

hay ΔBAH cân tại B

c: Ta có: BA=BH

EA=EH

Do đó: BE là đường trung trực của AH

=>BE\(\perp\)AH

mà AH//KD

nên BE\(\perp\)KD

4 tháng 5 2022

a) Áp dụng ĐL Pytago ta có: \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABH\) và \(\Delta ADH\) có: 

\(AH\) chung

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(BH=DH\) (gt)

\(\Rightarrow\Delta ABH=\Delta ADH\left(c.g.c\right)\)

c) Do \(\Delta ABH=\Delta ADH\Rightarrow\widehat{B}=\widehat{ADH}\) mà \(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{B}\)

Lại có \(BA//DK\) (do cùng vuông góc \(AC\)\(\Rightarrow\widehat{KDC}=\widehat{B}\) (đồng vị)

Xét \(\Delta DKC\) và \(\Delta DEC\) có:

\(\widehat{DKC}=\widehat{DEC}=90^0\)

\(CD\) chung

\(\widehat{KDC}=\widehat{EDC}=\widehat{B}\)

\(\Rightarrow\Delta DKC=\Delta DEC\) (ch - gn) \(\Rightarrow DE=DK\)

d) Xét tam giác \(AMC\) có: \(\left\{{}\begin{matrix}MK\perp AC\\AE\perp MC\\MK\cap AE=D\end{matrix}\right.\)

\(\Rightarrow D\) là trực tâm \(\Rightarrow MD\perp AC\) mà \(DK\perp AC\Rightarrow MD\equiv MK\)

\(\Rightarrow MK\perp AC\Rightarrow MK//AB\)

18 tháng 3 2021

a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC

mà AC=10cm => AB=10cm

Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H

=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)

dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm

Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC

=> BH=CH=6cm

b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)

Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)

Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)

từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)

Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)

=> AK=AD

13 tháng 2 2022

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm 

14 tháng 10 2021

a: Ta có: AD//BC

AC\(\perp\)AD

Do đó: AC\(\perp\)BC

Xét ΔBAK vuông tại A có AC là đường cao ứng với cạnh huyền BK, ta được:

\(CB\cdot CK=AC^2\left(1\right)\)

Xét ΔADC vuông tại A có AH là đường cao ứng với cạnh huyền CD,ta được:

\(CH\cdot CD=AC^2\left(2\right)\)

Từ (1) và(2) suy ra \(CB\cdot CK=CH\cdot CD\)