Cho 0 < a ≠ 1 , b > 0 thỏa mãn điều kiện log a b < 0. Khẳng định nào sau đây là đúng
A. 1 < b < a 0 < b < a < 1
B. 1 < a < b 0 < a < b < 1
C. 0 < a < 1 < b 0 < b < 1 < a
D. 0 < b < 1 ≤ a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Cho ta thấy logab= 2 và logba= ½. Do vậy logba< 1< logab
Đáp án C
Đặt f ( x ) = a x 2 + b x + c là là hàm số đa thức nên liên tục trên .
Ta có: f ( 0 ) = c và
f 1 3 = a 9 + b 3 + c = a + 3 b + 9 c 9 = 2 a + 6 b + 18 c 18 = ( 2 a + 6 b + 19 c ) − c 18 = − c 18
⇒ f ( 0 ) . f 1 3 < 0
KL: Phương trình a x 2 + b x + c = 0 có ít nhất một nghiệm thuộc khoảng 0 ; 1 3
Đáp án B
a 2 + 9 b 2 = 10 a b ⇔ a + 3 b 2 = 16 a b ⇔ a + 3 b 4 = a b ⇒ log a + 3 b 4 = log a + log b 2
Đáp án C
Ta có log a b < 0 ⇔ log a b < log a 1. Xét 2 trường hợp
T H 1 : a > 1 suy ra log a b < log a 1 ⇔ b < 1. Kết hợp điều kiện ta được 0 < b < 1 < a
T H 2 : 0 < a < 1 suy ra log a b < log a 1 ⇔ b > 1. Kết hợp điều kiện ta được 0 < a < 1 < b
Vậy khẳng định đúng là 0 < a < 1 < b 0 < b < 1 < a