K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Đáp án là A

AH
Akai Haruma
Giáo viên
28 tháng 10 2017

Lời giải:

Có \(f(x)=x-m^2+\frac{m}{x+1}\Rightarrow f'(x)=1-\frac{m}{(x+1)^2}\)

Do $m$ dương nên

\(f'(x)=0\Leftrightarrow (x+1)^2=m\Rightarrow x=\sqrt{m}-1\) hoặc \(x=-\sqrt{m}-1\) (TH này loại vì \(x\geq 0\))

Giờ ta chỉ cần thử giá trị của hàm tại những điểm đặc biệt thôi, vì giá trị cực trị bao giờ cũng xuất hiện ở những điểm đặc biệt của x

\(f(0)=-m^2+m=-2\Leftrightarrow m=2\)

\(f(1)=1-m^2+\frac{m}{2}=-2\Leftrightarrow m=2\)

\(f(\sqrt{m}-1)=\sqrt{m}-1-m^2+\frac{m}{\sqrt{m}-1}=-2\), em shift solve để giải thu được \(m=2,6.....\)

Đến đây theo thông thường ta phải thử lại giá trị của $m$ để tìm đáp án đúng nhất. Nhưng do chỉ tìm giá trị gần nhất thôi nên dễ thấy $m$ gần giá trị $3$ nhât, chọn đáp án B.

17 tháng 6 2018

7 tháng 5 2019

11 tháng 1 2019

Chọn C

3 số : ln   2 ;   ln ( 2 x - 1 ) ;   ln ( 2 x + 3 ) lập thành cấp số cộng

⇒ 2 x = 2 + 11 ⇒ x ≈ 25

20 tháng 8 2017

theo định lí Vi-Et nha bạn

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

NV
9 tháng 3 2022

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)

\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)

\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho luôn có ít nhất 3 nghiệm thực

10 tháng 3 2022

có dấu hiệu nào để mình biết xét từ khoảng nào kh ạ?