Hàm số y = x 3 − 3 x + 3 đạt cực đại tại điểm x = x 0 . Khi đó x 0 bằng:
A. 0
B. 4
C. -1
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d
Từ y ' = 3 a x 2 + 2 b x + c ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c
Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17
Đáp án C
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
Đáp án A
Mệnh đề 1) sai vì f ' x 0 = 0 chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại x 0
Mệnh đề 2) Sai vì khi f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại x 0 .
Mệnh đề 3) sai vì f ' x đổi dấu qua điểm x 0 thì điểm x 0 có thể là điểm cực đại hoặc điểm cực tiểu của hàm số.
Mệnh đề 4) Sai vì trong trường hợp này x 0 là điểm cực tiểu của đồ thị hàm số.
Đáp án A
A sai vì hàm số y = x 3 có y ' 0 = 0 nhưng không đạt cực trị tại x = 0
B sai vì hàm số y = x 4 có y ' 0 = 0 , y ' ' 0 = 0 đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0 thì điểm x 0 nhưng không đạt cực trị tại x = 0
C sai vì “Nếu f ' x đổi dấu khi x qua x 0 thì điểm x 0 là điểm trị (cực đại và cực tiểu) của hàm số y = f ' ' x
D sai vì “Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = 0 ; f ' ' x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f ' ' x
Lời giải:
Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)
Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)
a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)
Thử lại: \(y'=2x^2-2x\)
\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$
Vậy $m=2$
b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)
\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$
Vậy không tồn tại $m$ thỏa mãn.
c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.
Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt
Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)
d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$
Với ĐKXĐ như phần c, áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)
Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)
Mà \(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)
Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)
Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$
Đáp án C
Có y ' = 3 x 2 − 3 ; y ' = 0 ⇔ x = ± 1 . Ta có bảng xét dấu của y
Dựa vào bảng xét dấu này thì hàm số đạt cực đại tại x=-1