K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d

Từ y ' = 3 a x 2 + 2 b x + c  ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c

Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17

Đáp án C

28 tháng 1 2018

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

21 tháng 1 2017

Đáp án D

  x 0 được gọi là điểm cực trị của hàm số y = f x nếu qua x 0 thì f ' x đổi dấu.

(I) sai vì   f ' x 0 = 0  chỉ là điều kiện cần mà chưa là điều kiện đủ.

(II) sai vì hàm phân thức y = a x 2 + b x + c c x + d  có cực đại, cực tiểu nhưng giá trị cực đại nhỏ hơn giá trị cực tiểu.

(III) sai vì có những hàm số chỉ có cực đại mà không có cực tiểu. Ví dụ y = − x 2 + 2 x  đạt cực đại tại x=1 mà không có cực tiểu.

(IV) đúng.

30 tháng 3 2018

Chọn C

17 tháng 3 2018

27 tháng 10 2019

Đáp án B

TXĐ: D = R

Đạo hàm 

Điều kiện để hàm số có cực đại và cực tiểu là ab < 0

Hàm số đạt cực đại tại A(0;3)  ⇔ c = 3

Hàm số đạt cực tiểu tại  và điểm cực tiểu là B(1;-3), suy ra