Giá trị của l i m ( n + 2018 - n - 2018 ) là
A. 1
B. - ∞
C. + ∞
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Mà \(a^2;b^2;c^2\ge0\forall a;b;c\) nên điều này xảy ra \(\Leftrightarrow a=b=c=0\)
\(\Rightarrow M=2018^{2014}+2018^{2014}-2018^{2014}=2018^{2014}\)
Áp dụng \(x^2+y^2\ge2xy\)
\(\Rightarrow\left(a^{1009}\right)^2+\left(b^{1009}\right)^2\ge2a^{1009}b^{1009}\)
\(\Rightarrow2a^{2018}b^{2018}\ge2a^{1009}b^{1009}\)
\(\Leftrightarrow2a^{1009}b^{1009}\left(1-ab\right)\le0\)
\(\Rightarrow0\le ab\le1\) \(\Rightarrow1-ab\ge0\)
\(\Rightarrow P=2018\left(1-ab\right)\ge0\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)
\(\Rightarrow a=b=c=0\)
Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)
Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)
Đáp án D