Làm bài này cho mik với
Cho A = 1 + 3 + 3 2 + 3 3 + … + 3 101. Chứng minh rằng A chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6+...+3^{99})\vdots13\)
nên \(A⋮13\).
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
a; Chứng minh tích hai số tự nhiên liên tiếp luôn chia hết cho 6
Ta có 1; 2 là hai số tự nhiên liên tiếp
Tích của hai số trên là: 1.2 = 2 không chia hết cho 6
Vậy tích của hai số tự nhiên liên tiếp luôn chia hết cho 6 là điều không thể.
A = \(\overline{aaaa}\) ⋮ 101
A = a x 1111
A = a x 101 x 11 ⋮ 101 (đpcm)
A=1+2+22+23+...+2101
A=(1+2+22)+(23+24+25)+...+(299+2100+2101)
A=1.(1+2+22)+23.(1+2+22)+...+299.(1+2+22)
A=1.7+23.7+...+299.7
A=7.(1+23+...+299)
=> A chia hết cho 7
B=3+32+33+...+3150
B=(3+32+33)+...+(3148+3149+3150)
B=3.(3+32+33)+...+3148.(3+32+33)
B=3.39+...+3148.39
B=39.(3+...+3148)
=>B chia hết cho 39
A=1+2+22+23+...+2101
A=(1+2+22)+(23+24+25)+...+(299+2100+2101)
A=1.(1+2+22)+23.(1+2+22)+...+299.(1+2+22)
A=1.7+23.7+...+299.7
A=7.(1+23+...+299)
=> A chia hết cho 7 (đpcm)
B=3+32+33+...+3150
B=(3+32+33)+...+(3148+3149+3150)
B=3.(3+32+33)+...+3148.(3+32+33)
B=3.39+...+3148.39
B=39.(3+...+3148)
=>B chia hết cho 39
Ta có: \(A=1+3^1+3^2+3^3+3^4+3^5+...+3^{101}\)
\(A=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(A=\left(1+3^1+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(A=13+3^3.13+...+3^{99}.13\)
\(A=13\left(1+3^3+3^6+...+3^{99}\right)⋮13\)
=> đpcm
\(A=1+3+3^2+3^3+...+3^{101}\)
\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(A=13+...+3^{99}.\left(1+3+3^2\right)\)
\(A=13+...+3^{99}.13\)
\(A=13.\left(1+...+3^{99}\right)\)
Vì \(13⋮13\) nên \(13.\left(1+...+3^{99}\right)⋮13\)
Vậy \(A⋮13\)
\(#NqHahh\)
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)