K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Chọn C.

Ta có y ' = 1 + x 2 x + 2 2 x - 3 3 1 - x nên   y ' = 0 ⇔ x = - 2 x = - 1 x = 1 x = 3

Ta thấy đạo hàm đổi dấu 2 lần nên hàm số có hai điểm cực trị suy ra đồ thị hàm số có 2 điểm cực trị.

Trắc nghiệm: Ta thấy phương trình y'=0 có 2 nghiệm đơn hoặc bội lẻ nên đồ thị hàm số có hai điểm cực trị

14 tháng 1 2022

Bài 8:

a) f(-1) = (-1) - 2 = -3

f(0) = 0 - 2 = -2

b) f(x) = 3

\(\Rightarrow x-2=3\)

\(x=3+2\)

\(x=5\)

Vậy \(x=5\) thì f(x) = 3

c) Thay tọa độ điểm A(1; 0) vào hàm số, ta có:

VT = 0; VP = 1 - 2 = -1

\(\Rightarrow VT\ne VP\)

\(\Rightarrow\) Điểm A(1; 0) không thuộc đồ thị của hàm số đã cho

Thay tọa độ điểm B(-1; -3) vào hàm số, ta có:

VT = -3; VP = -1 - 2 = -3

\(\Rightarrow VT=VP=-3\)

\(\Rightarrow\) Điểm B(-1; -3) thuộc đồ thị hàm số đã cho

Thay tọa độ điểm C(3; -1) vào hàm số, ta có:

VT = -1; VP = 3 - 2 = 1

\(\Rightarrow VT\ne VP\)

\(\Rightarrow\) Điểm C(3; -1) không thuộc đồ thị hàm số đã cho.

14 tháng 1 2022

bạn ơi VT và VP có nghĩa là j z bạn

12 tháng 12 2017

các bn làm ơn giúp mk giải bài toán này ik mk đag cần nó gấp :(

12 tháng 12 2017

EASY MÀ

10 tháng 12 2020

giải giúp mik vs 

10 tháng 12 2020

a) 

Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3

Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1

Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)

Thay x=0 vào hàm số y= -x+1, ta được: y=  -0 + 1 = 1

Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1

(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)

b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :

3x+3 = -x+1

<=> 3x + x = 1 - 3

<=> 4x = -2

<=> x= - \(\dfrac{1}{2}\)

Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)

Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))

c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α

OB= \(\left|x_B\right|=\left|-1\right|=1\)

OC= \(\left|y_C\right|=\left|3\right|=3\)

Xét △OBC (O= 90*), có:

\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)

=> α= 71*34'

Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'

4 tháng 11 2016

Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2

2 tháng 12 2016

1,04 m

tk mk nha

mk sẽ tk lại

hứa mà

23 tháng 6 2021

1. hàm số nghịch biến khi

\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\) 

2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)

\(\Rightarrow y=0\)

Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)

3. pt hoành độ giao điểm của 

\(y=-x+2,và,y=2x-1\) là

\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)

A(1,1)

3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)

\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)

\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)

Dấu = xảy ra khi x=1

=>Chọn A

23 tháng 12 2021

a: Để hàm số là hàm số bậc nhất thì 2m-3<>0

hay m<>3/2

b: Để hàm số đồng biến thì 2m-3>0

hay m>3/2

Để hàm số nghịch biến thì 2m-3<0

hay m<3/2

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3