Cho tứ diện ABCD có A B = C D = 2 a . Gọi M, N lần lượt là trung điểm của BC, AD và M N = a 3 . Tính góc tạo bởi hai đường thẳng AB và CD
A. 30 °
B. 45 °
C. 60 °
D. 90 °
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Qua M vẽ đường thẳng song song với AB cắt AC tại P và vẽ đường thẳng song song với CD cắt BD tại Q. Ta có mp (MNPQ) song song với cả AB và CD. Từ đó
Áp dụng tính chất đường trung bình trong tam giác (do M, N là các trung điểm) ta suy ra được MP = MQ = NP = a hay tứ giác MPNQ là hình thoi.
Tính được
Đáp án C
Gọi P là trung điểm của AC.
Ta có: P N / / C D , M P / / A B ⇒ A B ; C D = M P ; P N
P N = M P = a 2 , M N = a 3 2 ⇒ cos M P N ⏜ = − 1 2 ⇒ M P N ⏜ = 120 °
⇒ A B ; C D ⏜ = 60 °
Đáp án B
Gọi E là trung điểm AC
Khi đó NE//AB suy ra A B ; M N ^ = N E ; M N ^
Do đó [ E N M ^ = 30 ° E N M ^ = 150 °
Lại có N E = A B 2 = a 2 ; M E = a 2 nên tam giác MNE cân tại E suy ra E N M ^ = 30 ° ⇒ N E M ^ = 120 °
Suy ra M N = M E 2 + N E 2 - 2 M E . N E . cos N E M ^ = a 3 2 .
Đáp án C
Qua M vẽ đường thẳng song song với AB cắt AC tại P và vẽ đường thẳng song song với CD cắt BD tại Q. Ta có mp (MNPQ) song song với cả AB và CD. Từ đó ( A B , C D ^ ) = ( M P , M Q ^ ) = P M Q ^
Áp dụng tính chất đường trung bình trong tam giác (do M, N là các trung điểm) ta suy ra được M P = M Q = N P = N Q = a hay tứ giác MPNQ là hình thoi.