Cho ba số thực dương a, b,c khác 1. Đồ thị các hàm số y = l o g a x , y = l o g b x , y = l o g c x được cho trong hình vẽ bên. Tìm khẳng định đúng.
A. b < c < a
B. a < b < c
C. a < c < b
D. b < a < c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\) Do \(c^x\) nghịch biến\(,a^x,b^x\) đồng biến\(\Rightarrow c< 1,a>1,b>1\Rightarrow c\) nhỏ nhất \(\Rightarrow\)Loại \(C,D\)
\(-\) Dựa vào đồ thị ta thấy\(,b^x\) có đồ thị đi lên cao hơn so với \(a^x\Rightarrow b>a\Rightarrow\) Chọn \(A\)
Nhận xét:
+) Đồ thị hàm số y = x a nghịch biến trên khoảng ( 0 ; + ∞ ) ⇒ a < 0
+) Xét đồ thị hàm số y = log b x v à y = log c x , x > 0
Cho y=1 ta có: log b x 1 = log c x 2 ⇔ x 1 = b , x 2 = c
Mà x 1 < x 2 ⇒ b < c ⇒ a < 0 < b < c . Vậy a<b<c
Chọn đáp án D.