Cho hàm số y = f x liên tục trên R và có đạo hàm f ' x = x 2 x - 2 x 2 - 6 x + m với mọi x ∈ ℝ Có bao nhiêu số nguyên m thuộc đoạn [-2019;2019] để hàm số g x = f 1 - x nghịch biến trên khoảng - ∞ ; - 1 ?
A. 2010
B. 2012
C. 2011
D. 2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.
Cách giải:
Xét giao điểm của đồ thị hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ thị cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy => phương trình g(x) = 0 không có nghiệm