K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

9 tháng 3 2017

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy  m a x [ a ; e ]   f ( x ) = f ( e ) ;   m i n [ a ; e ]   f ( x ) = f ( b )

Chọn  C.

5 tháng 1 2018

8 tháng 10 2019

Chọn A

Phương pháp:

Nếu f ' ( x ) ≥ 0 ,   ∀ x ∈ a ; b  và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) đồng biến trên khoảng (a;b).

Nếu  f ' ( x ) ≤ 0 ,   ∀ x ∈ a ; b  và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) nghịch biến trên khoảng (a;b) Cách giải:

Quan sát đồ thị hàm số y=f’(x) , ta thấy f’(x) >0 =>Hàm số f (x) đồng biến trên

khoảng (-1;1).

=>Mệnh đề ở câu A là sai.

20 tháng 2 2019

Chọn C 

Trên  đoạn [ - 1; 1] đồ thị hàm số y= f’( x)  nằm phía trên trục hoành.

=> Trên  đoạn [ - 1; 1] thì f’( x) > 0.

=> Trên  đoạn [ - 1; 1] thì  hàm số y= f( x) đồng biến

22 tháng 11 2019

Đáp án C

Phương pháp : Xác định hàm số f’(x) từ đó tính được 

Cách giải : Ta dễ dàng tìm được phương trình parabol là

Đồ thị hàm số đi qua gốc tọa độ 

2 tháng 11 2017

Đáp án D

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)