K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

18 tháng 7 2020

Y, Z là đồng phân nên X, Y, Z, T đều là các chất 2 chức

nNaOH = 0,2 mol => nE = 0,1 mol => nO = 4nE = 0,4 mol

Đặt mol CO2 và H2O lần lượt là a, b

BTKL: 44a+18b = 11,52 + 0,32.32

BTNT O: 2a + b = 0,32.2 + 0,4

=> a = 0,38; b = 0,28

Ta thấy nE = nCO2 – nH2O => X, Y, Z, T đều là các hợp chất no

Số C trung bình: 0,38 / 0,1 = 3,8

Do MX < MY = MZ < MT, este có ít nhất 4C nên các chất có CTPT là:

X: C3H4O4

Y và Z: C4H6O4

T là: C5H8O4

Do E + NaOH → 3 ancol nên Z cho 1 ancol và T cho 2 ancol

Vậy các este là:

T: CH3OOC-COOC2H5 (y mol)

Z: (HCOO)2C2H4 (y mol)

Các ancol gồm CH3OH (y mol); C2H5OH (y mol); C2H4(OH)2: y mol

Giả sử: E gồm

C3H4O4: 2x

C4H6O4 (axit): x

C4H6O4 (este): y

C5H8O4: y

nE = 2x+x+y+y = 0,1

nC = 3.2x+4x+4y+5y = 0,38

=> x = 0,02; y = 0,02

Vậy m = (32+46+62).0,02 = 2,8 gam

#tk,.

30 tháng 6 2020

Hơn 80% là TK thì mình xóa vài câu nhé.

NV
1 tháng 4 2019

\(w=\left(1+\sqrt{3}\right)z+2\Rightarrow z=\frac{w-2}{1+\sqrt{3}}\Rightarrow z-1=\frac{w}{1+\sqrt{3}}-\sqrt{3}\)

\(\left|z-1\right|=2\Rightarrow\left|\frac{w}{1+\sqrt{3}}-\sqrt{3}\right|=2\)

\(\Rightarrow\) Tập hợp \(w\) là đường tròn bán kính \(r=2\left(1+\sqrt{3}\right)\)

1 tháng 4 2019

Đáp án không có bác ơiii ! Cảm ơn nhe

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 +...
Đọc tiếp

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 ​ + 4 y ​ = 8 1 ​ Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 ​ x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 ​ x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 ​ + 4 1 ​ + 5 1 ​ + 6 1 ​ )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t ​ = y x+2y+z+t ​ = z x+y+2z+t ​ = t x+y+z+2t ​ . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y ​ + t+x y+z ​ + x+y z+t ​ + y+z t+x ​ is

2
28 tháng 2 2018

nhanh đi nhé

1 tháng 11 2019

KHO QUÁ ĐI

NV
25 tháng 2 2020

Gọi \(N\left(4;-1;-3\right)\Rightarrow2\overrightarrow{NA}-\overrightarrow{NB}=0\)

\(2MA^2-MB^2=4\)

\(\Leftrightarrow2\left(\overrightarrow{MN}+\overrightarrow{NA}\right)^2-\left(\overrightarrow{MN}+\overrightarrow{NB}\right)^2=4\)

\(\Leftrightarrow MN^2+2NA^2-NB^2+2\overrightarrow{MN}\left(2\overrightarrow{NA}-\overrightarrow{NB}\right)=4\)

\(\Leftrightarrow MN^2=4+NB^2-2NA^2=28\)

\(\Rightarrow MN=2\sqrt{7}\Rightarrow\) M thuộc mặt cầu (C) tâm N bán kính \(R=2\sqrt{7}\) có pt:

\(\left(x-4\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=28\)

\(M\in\left(P\right)\Rightarrow\) quỹ tích M là đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (C)

Theo định lý Pitago: \(r=\sqrt{R^2-d^2}\) với \(d\) là khoảng cách từ N tới mặt phẳng (P)
Bạn tự tính và thay số nốt đoạn còn lại.

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số...
Đọc tiếp

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-

có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])

có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:

mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số phần tử tương ứng có trong K và mod).

có tập hợp dãy số nguyên int (int[1], int[2], int[3], ..., int[n]) với mỗi phần tử trong tập hợp int đc tính theo công thức:

mod[i] = k[i] / x ( / là phép toán chia lấy phần nguyên, i là chỉ số phần tử tương ứng có trong K và int).

smod là tổng của các phần tử có trong tập hợp mod ( smod = mod[1] + mod[2] + mod[3] + ... + mod[n] )

sint là à tổng của các phần tử có trong tập hợp int (sint = int[1] + int[2] + int[3] +  ... + int[n])

T đc tính theo công thức sau : \(T = smod - sint - 12 * n\) (n là số phần tử của K như ở trên).

Ví dụ: có x = 922, tập hợp K có : K[1] = 3572 , K[2] = 3427 , K[3] = 7312 thì ta có:

mod[1] = 806, mod[2] = 661, mod[3] = 858

int[1] = 3, int[2] = 3, int[3] = 7

từ đó có smod = 2325 và sint = 13

K có 3 phần tử nên n = 3, từ đó có T =

T = 2325 - 13 - 12*3 = 2276

Giờ em đã có T và tập hợp K, tức là đã biết T và K[1], K[2], K[3], ..., K[n], lập công thức tính x

Em phải làm thế nào ạ ?

 

0
26 tháng 12 2017

xét từng TH của x,y,z